Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

netDx: Interpretable patient classification using integrated patient similarity networks

Authors: Pai, Shraddha; Hui, Shirley; Isserlin, Ruth; Shah, Muhammad A; Kaka, Hussam; Bader, Gary D;

netDx: Interpretable patient classification using integrated patient similarity networks

Abstract

Docker image containing installed netDx software in Ubuntu to reproduce examples from the published manuscript. The R implementation of netDx is hosted at: https://github.com/BaderLab/netDx --- Publication abstract: Patient classification has widespread biomedical and clinical applications, including diagnosis, prognosis and treatment response prediction. A clinically useful prediction algorithm should be accurate, generalizable, be able to integrate diverse data types, and handle sparse data. A clinical predictor based on genomic data needs to be easily interpretable to drive hypothesis-driven research into new treatments. We describe netDx, a novel supervised patient classification framework based on patient similarity networks. netDx meets the above criteria and particularly excels at data integration and model interpretability. We compared classification performance of this method against other machine-learning algorithms, using a cancer survival benchmark with four cancer types, each requiring integration of up to six genomic and clinical data types. In these tests, netDx has significantly higher average performance than most other machine-learning approaches across most cancer types. In comparison to traditional machine learning-based patient classifiers, netDx results are more interpretable, visualizing the decision boundary in the context of patient similarity space. When patient similarity is defined by pathway-level gene expression, netDx identifies biological pathways important for outcome prediction, as demonstrated in diverse data sets of breast cancer and asthma. Thus, netDx can serve both as a patient classifier and as a tool for discovery of biological features characteristic of disease. We provide a freely available software implementation of netDx along with sample files and automation workflows in R.

Related Organizations
Keywords

Multimodal integration, Patient similarity networks, Patient classification, netDx, Precision medicine, Supervised learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 300
    download downloads 338
  • 300
    views
    338
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
300
338
Related to Research communities
Cancer Research