Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
2 Research products, page 1 of 1

  • Publications
  • Research software
  • Other research products
  • 2014-2023
  • Open Access
  • IL
  • AE
  • DARIAH EU

Relevance
arrow_drop_down
  • Publication . Article . Preprint . 2020 . Embargo End Date: 01 Jan 2020
    Open Access
    Authors: 
    Zamani, Maryam; Tejedor, Alejandro; Vogl, Malte; Krautli, Florian; Valleriani, Matteo; Kantz, Holger;
    Publisher: arXiv

    We investigated the evolution and transformation of scientific knowledge in the early modern period, analyzing more than 350 different editions of textbooks used for teaching astronomy in European universities from the late fifteenth century to mid-seventeenth century. These historical sources constitute the Sphaera Corpus. By examining different semantic relations among individual parts of each edition on record, we built a multiplex network consisting of six layers, as well as the aggregated network built from the superposition of all the layers. The network analysis reveals the emergence of five different communities. The contribution of each layer in shaping the communities and the properties of each community are studied. The most influential books in the corpus are found by calculating the average age of all the out-going and in-coming links for each book. A small group of editions is identified as a transmitter of knowledge as they bridge past knowledge to the future through a long temporal interval. Our analysis, moreover, identifies the most disruptive books. These books introduce new knowledge that is then adopted by almost all the books published afterwards until the end of the whole period of study. The historical research on the content of the identified books, as an empirical test, finally corroborates the results of all our analyses. Comment: 19 pages, 9 figures

  • Open Access English
    Authors: 
    Nicholas, Lionel; Lyding, Verena; Borg, Claudia; Forascu, Corina; Fort, Karen; Zdravkova, Katerina; Kosem, Iztok; Cibej, Jaka; Holdt, Spela Arhar; Millour, Alice; +9 more
    Country: Malta

    We introduce in this paper a generic approach to combine implicit crowdsourcing and language learning in order to mass-produce language resources (LRs) for any language for which a crowd of language learners can be involved. We present the approach by explaining its core paradigm that consists in pairing specific types of LRs with specific exercises, by detailing both its strengths and challenges, and by discussing how much these challenges have been addressed at present. Accordingly, we also report on on-going proof-of-concept efforts aiming at developing the first prototypical implementation of the approach in order to correct and extend an LR called ConceptNet based on the input crowdsourced from language learners. We then present an international network called the European Network for Combining Language Learning with Crowdsourcing Techniques (enetCollect) that provides the context to accelerate the implementation of the generic approach. Finally, we exemplify how it can be used in several language learning scenarios to produce a multitude of NLP resources and how it can therefore alleviate the long-standing NLP issue of the lack of LRs. peer-reviewed

Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
2 Research products, page 1 of 1
  • Publication . Article . Preprint . 2020 . Embargo End Date: 01 Jan 2020
    Open Access
    Authors: 
    Zamani, Maryam; Tejedor, Alejandro; Vogl, Malte; Krautli, Florian; Valleriani, Matteo; Kantz, Holger;
    Publisher: arXiv

    We investigated the evolution and transformation of scientific knowledge in the early modern period, analyzing more than 350 different editions of textbooks used for teaching astronomy in European universities from the late fifteenth century to mid-seventeenth century. These historical sources constitute the Sphaera Corpus. By examining different semantic relations among individual parts of each edition on record, we built a multiplex network consisting of six layers, as well as the aggregated network built from the superposition of all the layers. The network analysis reveals the emergence of five different communities. The contribution of each layer in shaping the communities and the properties of each community are studied. The most influential books in the corpus are found by calculating the average age of all the out-going and in-coming links for each book. A small group of editions is identified as a transmitter of knowledge as they bridge past knowledge to the future through a long temporal interval. Our analysis, moreover, identifies the most disruptive books. These books introduce new knowledge that is then adopted by almost all the books published afterwards until the end of the whole period of study. The historical research on the content of the identified books, as an empirical test, finally corroborates the results of all our analyses. Comment: 19 pages, 9 figures

  • Open Access English
    Authors: 
    Nicholas, Lionel; Lyding, Verena; Borg, Claudia; Forascu, Corina; Fort, Karen; Zdravkova, Katerina; Kosem, Iztok; Cibej, Jaka; Holdt, Spela Arhar; Millour, Alice; +9 more
    Country: Malta

    We introduce in this paper a generic approach to combine implicit crowdsourcing and language learning in order to mass-produce language resources (LRs) for any language for which a crowd of language learners can be involved. We present the approach by explaining its core paradigm that consists in pairing specific types of LRs with specific exercises, by detailing both its strengths and challenges, and by discussing how much these challenges have been addressed at present. Accordingly, we also report on on-going proof-of-concept efforts aiming at developing the first prototypical implementation of the approach in order to correct and extend an LR called ConceptNet based on the input crowdsourced from language learners. We then present an international network called the European Network for Combining Language Learning with Crowdsourcing Techniques (enetCollect) that provides the context to accelerate the implementation of the generic approach. Finally, we exemplify how it can be used in several language learning scenarios to produce a multitude of NLP resources and how it can therefore alleviate the long-standing NLP issue of the lack of LRs. peer-reviewed

Send a message
How can we help?
We usually respond in a few hours.