Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
2,444 Research products, page 1 of 245

  • Publications
  • Other research products
  • 2012-2021
  • Geosciences

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Oleg Yermolayev; Evgeniya Platoncheva; Benedict Essuman-Quainoo;
    Publisher: Multidisciplinary Digital Publishing Institute

    1.5 m) were used in the work. The study used methods of image interpretation such as remote sensing of the earth and geoinformation mapping. For 70 key areas (interfluve spaces of river basins), the study developed a method of geoinformation mapping of the ephemeral gully erosion belt dynamics on arable lands. In the same way, the research developed a system of quantitative indicators characterizing its development on arable slopes. The dynamics of ephemeral gully erosion was evaluated over three-time intervals: the 1980s, 2000s, and 2010s by determining the horizontal dissection (density) and density of ephemeral gully erosion. Over the past 30 years, in the direction from the south of the forest sub-zone to the forest-steppe and steppe landscapes, there was a sharp increase in the horizontal dissection and density of the ephemeral gully network: an average of 4.6 and 10 times, respectively. The ephemeral gully erosion belt advances toward the watershed because of the formation of new erosion in the upper parts of the ephemeral gully networks and its extension, while there is a noticeable reduction in the width of the erosion-weakly active belt - sheet and rill erosion. Erosion is the leading process of soil degradation on agricultural land. In the spectrum of erosion processes, the most unfavorable for soil degradation are the processes of linear (ephemeral and gully) erosion. An assessment of the dynamics of linear erosion in the intensive farming zone of the European part of Russia (EPR) is relevant due to the lack of generalized data on the development of this type of erosion in the post-Soviet period and also, due to the highest intensity of soil erosion in the ephemeral gully erosion. The development of information technologies and the availability of high-resolution and ultra-high-resolution satellite images make it possible to solve the problems of ephemeral gully erosion belts identification, and also makes it possible to trace the dynamics of development of stream erosion on arable lands over a period characterized by the greatest changes in the climate system and economic conditions in the post-Soviet period (1980s&ndash 2010s). The study was conducted on the eastern wing of the boreal ecotone of the Russian Plain within the southern border of these zones of mixed and broad-leaved forests, forest-steppe, and steppe landscapes using the basin approach. For the initial material, satellite images of medium (30 m) and high resolution (0.5&ndash

  • Open Access English
    Authors: 
    Julian Hofmann; Holger Schüttrumpf;
    Publisher: MDPI AG
    Country: Germany

    Geosciences 9(3), 127 (1-22) (2019). doi:10.3390/geosciences9030127 Published by MDPI, Basel

  • Open Access

    We investigate how suitable ground penetrating radar (GPR) and geoelectrics are to prospect the remains of submerged wooden archaeological constructions in the water column. For this purpose, we determined the contrasts of electric resistivity and dielectric permittivity from measurements on present-day wood samples, serving as simplified approximations of water saturated and undegraded archaeological wood. As common substitutes of hard and soft construction wood, we investigated oak and spruce wood. The electric resistivity and dielectric permittivity were determined with increasing moisture content from small-scale electric and GPR measurements using a Wenner alpha array and a 2 GHz Palm antenna in a watering experiment. In a water-saturated state, resistivity values of <270 Ωm and relative dielectric permittivity values of >20 were observed. The anisotropy effects and deviations of the wood species were seen to be up to 30%. On the basis of this, the relative material contrasts of wood with respect to fresh water, sand, and clay were calculatedand compared to values found in the literature for seismic contrasts. Geoelectric, GPR, and seismic measurements show contrasts of 0.3 to 0.8, −0.4 to 0.2, and −0.24 to 0.35, depending on the surrounding material and structural orientation of the wood. The highest contrasts were found for wood in fresh water, followed by clayey and sandy subsoils. On the basis of the determined contrasts, analytical calculations were performed showing that an object of 0.5 m diameter can be detected at depths between 0.5 m and 1.5 m with geoelectrics (Schlumberger) and at depths between 0.5 m and 3 m with ground penetrating radar measurements (400 MHz).

  • Open Access English
    Authors: 
    Apoorv Jyoti; Ralf Haese;
    Publisher: MDPI AG

    Micro-computed tomography (micro-CT) is increasingly utilized to image the pore network and to derive petrophysical properties in combination with modelling software. The effect of micro-CT image resolution and size on the accuracy of the derived petrophysical properties is addressed in this study using a relatively homogenous sandstone and a heterogenous, highly porous bioclastic limestone. Standard laboratory procedures including NMR (nuclear magnetic resonance) analysis, micro-CT analysis at different image resolutions and sizes and pore-scale flow simulations were used to determine and compare petrophysical properties. NMR-derived pore-size distribution (PSD) was comparable to the micro-CT-derived PSD at a resolution of 7 µm for both the rock types. Porosity was higher using the water saturation method as compared to the NMR method in both rocks. The resolution did not show a significant effect on the porosity of the homogeneous sandstone, but porosity in the heterogeneous limestone varies depending on the location of the sub-sample. The transport regime in the sandstone was derived by simulations and changed with the resolution of the micro-CT image. The transport regime in the sandstone was advection-dominated at higher image resolution and diffusion-dominated when using a lower image resolution. In contrast, advection was the dominant transport regime for the limestone based on simulations using higher and lower image resolutions. Simulation-derived permeability for a 400 Voxel3 image at 7 µm resolution in the Berea sandstone matched laboratory results, although local heterogeneity within the rock plays an integral role in the permeability estimation within the sub-sampled images. The simulation-derived permeability was highly variable in the Mount Gambier limestone depending on the image size and resolution with the closest value to a laboratory result simulated with an image resolution of 2.5 µm and a size of 300 Voxel3. Overall, the study demonstrates the need to decide on micro-CT parameters depending on the type of petrophysical property of interest and the degree of heterogeneity within the rock types.

  • Open Access
    Authors: 
    Elizabeth M. Morris;
    Publisher: MDPI AG

    An empirical model for the densification of dry snow has been calibrated using strain-rate data from Pine Island Glacier basin, Antarctica. The model provides for a smooth transition between Stage 1 and Stage 2 densification, and leads to an analytical expression for density as a function of depth. It introduces two new parameters with a simple physical basis: transition density &rho 3 and M = 7 for the region. Using these values, the transition model produces better simulations of snow profiles from Pine Island Glacier basin than the well-established Herron and Langway and Ligtenberg models, both of which postulate abrupt transition. Simulation of density profiles from other sites using M = 7 produces the best values of &rho 3 for a low accumulation site, suggesting that transition density may vary with climatic conditions. The variation of bubble close-off depth and depth-integrated porosity with mean annual accumulation predicted by the transition model is similar to that predicted by the Simonsen model tuned for Greenland. T and a scaling factor, M, which controls the extent of the transition zone. The standard (Herron and Langway) parameterization is used for strain rates away from the transition zone. Calibration, though tentative, produces best parameter values of &rho 3 for a high accumulation site and 530 kg m &minus T = 580 kg m &minus T = 550 kg m &minus

  • Open Access English
    Authors: 
    Mateusz Zaręba; Tomasz Danek; Jerzy Zając;
    Publisher: MDPI AG

    Obtaining the most accurate and detailed subsurface information from seismic surveys is one of the main challenges for seismic data processing, especially in the context of complex geological conditions (e.g., mountainous areas). The correct calculation of static corrections allows for the reliable processing of seismic data. This, in turn, leads to better geological interpretation. A seismic signal passing through a near-surface zone (NSZ) is adversely affected by the high heterogeneity of this zone. As a result of this, observed travel times often show anisotropy. The application of refractive waves and the time delay solution without taking into account the effects caused by the complex anisotropy of an NSZ does not meet the standards of modern seismic surveys. The construction of the NSZ model in mountain regions with the use of refraction may be extremely difficult, as the vertical layers can be observed very close to the surface. It is not sufficient to apply regular isotropic refractive solutions in such conditions. The presented studies show the results of taking into account the anisotropy of an NSZ in the calculations of static corrections. The presented results show that this step is critical for the detailed processing of three-dimensional (3D) seismic data collected in the difficult region of the Carpathians in Southern Poland.

  • Open Access English
    Authors: 
    Syamsul Bachri; Rajendra P. Shrestha; Fajar Yulianto; Sumarmi Sumarmi; Kresno Sastro Bangun Utomo; Yulius Eka Aldianto;
    Publisher: MDPI AG

    s use over time. This situation has led the community to carry out land-use development activities in landslide hazard-prone areas. The use of land can have a positive impact by increasing economic conditions, but it can have negative impacts on the environment. Therefore, this study aimed to identify the landslide hazard, focusing on the development of a landform map to reduce the risk of landslide disaster in JLS, Malang Regency. The integration of remote sensing and geographic information systems, as well as field observation, were used to create a landform map and a landslide susceptibility map. Using the geomorphological approach as a basic concept in landform mapping, the morphology, morphogenesis, and morphoarrangement conditions were obtained from the remote sensing data, GIS, and field observation, while morphochronological information was obtained from a geological map. The landslide susceptibility map was prepared using 11 landslide conditioning factors by employing the index of entropy method. Thirty-nine landform units were successfully mapped into four landslide susceptibility classes. The results showed that the study area is dominated by a high level of landslide susceptibility with a majority of moderate to strongly eroded hill morphology. It also reaffirms that landform mapping is a reliable method by which to investigate landslide susceptibility in JLS, Malang Regency. There has been an increasing trend of land area being brought under human&rsquo

  • Open Access English
    Authors: 
    Arianna Traviglia; Andrea Torsello;
    Publisher: Multidisciplinary Digital Publishing Institute
    Country: Italy
    Project: EC | VEiL (656337)

    Automated detection of landscape patterns on Remote Sensing imagery has seen virtually little or no development in the archaeological domain, notwithstanding the fact that large portion of cultural landscapes worldwide are characterized by land engineering applications. The current extraordinary availability of remotely sensed images makes it now urgent to envision and develop automatic methods that can simplify their inspection and the extraction of relevant information from them, as the quantity of information is no longer manageable by traditional “human” visual interpretation. This paper expands on the development of automatic methods for the detection of target landscape features—represented by field system patterns—in very high spatial resolution images, within the framework of an archaeological project focused on the landscape engineering embedded in Roman cadasters. The targets of interest consist of a variety of similarly oriented objects of diverse nature (such as roads, drainage channels, etc.) concurring to demark the current landscape organization, which reflects the one imposed by Romans over two millennia ago. The proposed workflow exploits the textural and shape properties of real-world elements forming the field patterns using multiscale analysis of dominant oriented response filters. Trials showed that this approach provides accurate localization of target linear objects and alignments signaled by a wide range of physical entities with very different characteristics.

  • Open Access English
    Authors: 
    Tiziana Sgroi; Giuseppe Di Grazia; Paolo Favali;
    Publisher: MDPI AG
    Project: EC | ENVRI (283465)

    2 Hz band, typical of an Etna volcanic tremor. The tremor recorded by NEMO-SN1 shows a strong NW-SE directivity towards the volcano. Since the receiver is underwater, we inferred the presence of a circulation of magmatic fluids extended under the seafloor. This process is able to generate a signal strong enough to be recorded by the NEMO-SN1 seafloor observatory that hides frequencies linked to the oceanographic noise, permitting the offshore monitoring of the volcanic activity of Mt. Etna. The NEMO-SN1 seafloor observatory, located 2100 m below sea level and about 40 km from Mt. Etna volcano, normally records a background seismic signal called oceanographic noise. This signal is characterized by high amplitude increases, lasting up to a few days, and by two typical 0.1 and 0.3 Hz frequencies in its spectrum. Particle motion analysis shows a strong E-W directivity, coinciding with the direction of sea waves 2003 Mt. Etna eruption occurred. High-amplitude background signals were recorded during the explosive episodes accompanying the eruption. The spectral content of this signal ranges from 0.1 to 4 Hz, with the most powerful signal in the 0.5&ndash gravity waves induced by local winds are considered the main source of oceanographic noise. During the deployment of NEMO-SN1, the vigorous 2002&ndash

  • Open Access English
    Authors: 
    Sara Zanni; Alessandro De Rosa;
    Publisher: HAL CCSD
    Country: France
    Project: EC | RecRoad (660763), EC | RecRoad (660763)

    The present research is part of the project “From Aquileia to Singidunum: reconstructing the paths of the Roman travelers—RecRoad”, developed at the Université Bordeaux Montaigne, thanks to a Marie Skłodowska-Curie fellowship. One of the goals of the project was to detect and reconstruct the Roman viability between the Roman cities of Aquileia (Aquileia, Italy) and Singidunum (Belgrade, Serbia), using different sources and methods, one of which is satellite remote sensing. The research project analyzed and combined several data, including images produced by the Sentinel-2 mission, funded by the European Commission Earth Observation Programme Copernicus, in which satellites were launched between 2015 and 2017. These images are freely available for scientific and commercial purposes, and constitute a constantly updated gallery of the whole planet, with a revisit time of five days at the Equator. The technical specifications of the satellites’ sensors are particularly suitable for archaeological mapping purposes, and their capacities in this field still need to be fully explored. The project provided a useful testbed for the use of Sentinel-2 images in the archaeological field. The study compares traditional Vegetation Indices with experimental trials on Sentinel images applied to the Srem District in Serbia. The paper also compares the results obtained from the analysis of the Sentinel-2 images with WorldView-2 multispectral images. The obtained results were verified through an archaeological surface survey.

Send a message
How can we help?
We usually respond in a few hours.