Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
2,909 Research products, page 1 of 291

  • Publications
  • Research software
  • Article
  • Preprint
  • Geosciences

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Mette Olivarius; Henrik Vosgerau; Lars Henrik Nielsen; Rikke Weibel; Sebastian N. Malkki; Benjamin D. Heredia; Tonny B. Thomsen;
    Publisher: Multidisciplinary Digital Publishing Institute

    The significance of mineralogical maturity as a provenance indicator has long been debated and we use this study to demonstrate that it can indeed be a powerful tool to track the distribution of sandstone reservoirs. We investigate the cause of the pronounced geographic and stratigraphic differences in mineralogical composition that are found in the Upper Triassic–Lower Jurassic Gassum Formation across the Norwegian–Danish Basin and surrounding areas. Zircon U-Pb dating of 46 sandstone samples including analysis of 4816 detrital grains are combined with quantifications of the detrital mineralogical composition and placed in a sequence stratigraphic framework. The results show that the Gassum Formation can be divided into a southeastern region with high mineralogical maturity and a less mature region to the northwest with more feldspars, rock fragments, micas, and heavy minerals. Both the mineralogical assemblage and the provenance signature have been thoroughly homogenized in the SE region where sediment supplies from the Fennoscandian Shield and the Variscan Orogen are evident. In the NW region, sediment was initially supplied from Fennoscandia only, but the provenance abruptly changed from the Telemarkia Terrane to comprising also the more distant Caledonian Orogen resulting in a different mineralogical assemblage. The change occurred during a basinwide regression and may be caused by tectonic movements in the hinterland that permanently changed the composition of the sediment supplied to the basin.

  • Open Access English
    Authors: 
    Apoorv Jyoti; Ralf Haese;
    Publisher: Multidisciplinary Digital Publishing Institute

    Micro-computed tomography (micro-CT) is increasingly utilized to image the pore network and to derive petrophysical properties in combination with modelling software. The effect of micro-CT image resolution and size on the accuracy of the derived petrophysical properties is addressed in this study using a relatively homogenous sandstone and a heterogenous, highly porous bioclastic limestone. Standard laboratory procedures including NMR (nuclear magnetic resonance) analysis, micro-CT analysis at different image resolutions and sizes and pore-scale flow simulations were used to determine and compare petrophysical properties. NMR-derived pore-size distribution (PSD) was comparable to the micro-CT-derived PSD at a resolution of 7 µm for both the rock types. Porosity was higher using the water saturation method as compared to the NMR method in both rocks. The resolution did not show a significant effect on the porosity of the homogeneous sandstone, but porosity in the heterogeneous limestone varies depending on the location of the sub-sample. The transport regime in the sandstone was derived by simulations and changed with the resolution of the micro-CT image. The transport regime in the sandstone was advection-dominated at higher image resolution and diffusion-dominated when using a lower image resolution. In contrast, advection was the dominant transport regime for the limestone based on simulations using higher and lower image resolutions. Simulation-derived permeability for a 400 Voxel3 image at 7 µm resolution in the Berea sandstone matched laboratory results, although local heterogeneity within the rock plays an integral role in the permeability estimation within the sub-sampled images. The simulation-derived permeability was highly variable in the Mount Gambier limestone depending on the image size and resolution with the closest value to a laboratory result simulated with an image resolution of 2.5 µm and a size of 300 Voxel3. Overall, the study demonstrates the need to decide on micro-CT parameters depending on the type of petrophysical property of interest and the degree of heterogeneity within the rock types.

  • Open Access
    Authors: 
    M. Meyer; Ingo Pfeffer; Carsten Jürgens;
    Publisher: MDPI AG
    Country: Germany

    While Light Detection and Ranging (LiDAR) revolutionized archaeological prospection and different visualizations were developed, an automated detection of cultural heritage still poses a significant challenge. Therefore, geographers and archaeologists from Westphalia, Germany are developing automated workflows for classifying field monuments from special terrain models. For this project, a combination of GIS, Python, and Object-Based Image Analysis (OBIA) is used. It focuses on three common types of monuments: Ridge and Furrow areas, Burial Mounds, and Motte-and-Bailey castles. The latter two are not classified binary, but in multiple classes, depending on their degree of erosion. This simplifies interpretation by highlighting the most interesting structures without losing the others. The results confirm that OBIA is suitable for detecting field monuments with hit rates of ~90%. A drawback is its dependency on the use of special terrain models like the Difference Map. Further limitations arise in complex terrain situations.

  • Open Access English
    Authors: 
    Dale W. Griffin; Erin E. Silvestri; Charlena Yoder Bowling; Timothy Boe; David B. Smith; Tonya L. Nichols;
    Publisher: MDPI AG

    Soil geochemical data from sample sites in counties that reported occurrences of anthrax in wildlife and livestock since 2000 were evaluated against counties within the same states (MN, MT, ND, NV, OR, SD and TX) that did not report occurrences. These data identified the elements, calcium (Ca), manganese (Mn), phosphorus (P) and strontium (Sr), as having statistically significant differences in concentrations between county type (anthrax occurrence versus no occurrence). Tentative threshold values of the lowest concentrations of each of these elements (Ca = 0.43 wt %, Mn = 142 mg/kg, P = 180 mg/kg and Sr = 51 mg/kg) and average concentrations (Ca = 1.3 wt %, Mn = 463 mg/kg, P = 580 mg/kg and Sr = 170 mg/kg) were identified from anthrax-positive counties as prospective investigative tools in determining whether an outbreak had “potential” or was “likely” at any given geographic location in the contiguous United States.

  • Open Access English
    Authors: 
    Panagiotis Sitarenios; Francesca Casini;
    Publisher: MDPI AG
    Country: Italy

    This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.

  • Open Access English
    Authors: 
    Francesco Castelli; Salvatore Grasso; Valentina Lentini; Maria Stella Vanessa Sammito;
    Publisher: MDPI AG
    Country: Italy

    This paper reports on the results of soil-foundation numerical modelling and the seismic response of a cooling tower founded on piles of a petrochemical facility located in the city of Augusta (Sicily, Italy). The city was affected in the past by some destructive earthquakes (1693, 1848, and 1990) that damaged a large territory of Southeastern Sicily, which was characterized by a very high seismic hazard. With this aim, the paper reports the FEM modelling of the seismic behaviour of the coupled soil-structure system. To determine the soil profile and the geotechnical characteristics, laboratory and in situ investigations were carried out in the studied area. The seismic event occurred in January 1693 and has been chosen as a scenario earthquake. Moreover, a parametric study with different input motions has also been carried out. A Mohr-Coulomb model has been adopted for the soil, and structural elements have been simulated by means of an elastic constitutive model. Two different vertical alignments have been analysed, considering both the free-field condition and the soil-structure interaction. The dynamic response has been investigated in terms of accelerations, response spectra, and amplification functions. The results have also been compared with those provided by Italian technical regulations. Finally, the seismic response of the coupled soil-structure system has been further examined in terms of peak bending moments along the pile foundation, emphasizing the possibility of a kinematic interaction on piles induced by the seismic action.

  • Open Access English
    Authors: 
    Dominik Gottron; Andreas Henk;
    Publisher: Multidisciplinary Digital Publishing Institute

    A numerical characterization of a fractured rock mass and its mechanical behavior using a discontinuum approach was carried out utilizing lattice-spring-based synthetic rock mass (LS-SRM) models. First, LS-SRM models on a laboratory scale were created to reproduce standard rock mechanical tests on Triassic sandstone samples from a quarry in Germany. Subsequently, the intact rock properties were upscaled to an element volume representative for geotechnical applications, recalibrated and combined with a Discrete Fracture Network (DFN) model. The resulting fractured rock mass properties are compared to predictions from empirical relationships based on rock mass classification schemes and the DFN-Oda-Geomechanics approach. Modeling results reveal a significant reduction in the strength of the fractured rock mass compared to the intact rock, showing a high agreement with empirically calculated values. Results for the deformation modulus reveal a significant reduction induced by the fracture network and a good agreement compared to the results obtained by other approaches. It is shown that the LS-SRM allows analyzing the complex mechanical behavior during failure of rock masses, including crack initiation, propagation and coalescence. The resulting rock mass properties are key parameters for a wide range of geotechnical applications and can be used for large-scale numerical modeling as well.

  • Open Access English
    Authors: 
    Elizabeth M. Morris;
    Publisher: Multidisciplinary Digital Publishing Institute

    An empirical model for the densification of dry snow has been calibrated using strain-rate data from Pine Island Glacier basin, Antarctica. The model provides for a smooth transition between Stage 1 and Stage 2 densification, and leads to an analytical expression for density as a function of depth. It introduces two new parameters with a simple physical basis: transition density &rho 3 and M = 7 for the region. Using these values, the transition model produces better simulations of snow profiles from Pine Island Glacier basin than the well-established Herron and Langway and Ligtenberg models, both of which postulate abrupt transition. Simulation of density profiles from other sites using M = 7 produces the best values of &rho 3 for a low accumulation site, suggesting that transition density may vary with climatic conditions. The variation of bubble close-off depth and depth-integrated porosity with mean annual accumulation predicted by the transition model is similar to that predicted by the Simonsen model tuned for Greenland. T and a scaling factor, M, which controls the extent of the transition zone. The standard (Herron and Langway) parameterization is used for strain rates away from the transition zone. Calibration, though tentative, produces best parameter values of &rho 3 for a high accumulation site and 530 kg m &minus T = 580 kg m &minus T = 550 kg m &minus

  • Open Access
    Authors: 
    N. E. Kozlov; Nikolay O. Sorokhtin; Eugeny V. Martynov;
    Publisher: MDPI AG

    The Kola region hosts numerous Paleozoic massifs of ultrabasic alkaline rocks and carbonatites with deposits of commercially valuable metals, such as iron, tantalum, niobium, and rare earth elements. These magmatic complexes are characterized by high contents of alkaline elements at generally low contents of SiO2 and/or Al2O3. In this study, we examined the precursors to the formation of the unique Paleozoic alkaline province through studying the early Precambrian stages in the evolution of the Kola collision area, from where these unique features probably originated. We mathematically modeled the changes in the chemical composition of these rocks. The obtained data can be used for metallogenic forecasting, which indicated a number of Precambrian objects in the region, namely, the Lapland Granulite Belt of the Kola region and granulite belts in Eurasia. The mathematical modeling performed during this research depicted a linear trend that defined the style of the changes in the chemical composition at the transition from the metaultrabasic-basic rocks of the Lapland granulite belt to the group of belts in Eurasia. These differences are statistically significant with respect to the obtained trend (chemical composition projected on the trend), mainly manifested as increased SiO2 and Al2O3 contents with a decreasing total alkalis content, which is opposite to the indicated trends of the changing chemical composition in the Paleozoic alkaline rock units of the Kola region. We concluded that one of the reasons for the unique composition of the Paleozoic magmatism products could be a specific feature of the earlier Neoarchean stages of the tectonic-magmatic activity in the northeastern Baltic Shield, which implies a close relationship between later geological events and the early Precambrian history, at least in the study area.

  • Open Access
    Authors: 
    Grießinger, Jussi; Bräuning, Achim; Helle, Gerhard; Schleser, Gerhard Hans; Hochreuther, Philipp; Meier, Wolfgang Jens-Henrik; Zhu, Haifeng;
    Country: Germany

    Tree-rings are recorders of environmental signals and are therefore often used to reconstruct past environmental conditions. In this paper, we present four annually resolved, multi-centennial tree-ring isotope series from the southeastern Tibetan plateau. The investigation site, where juniper and spruce trees jointly occur, is one of the highest known tree-stands in the world. Tree ring cellulose oxygen (&delta 13C series indicated a weaker and non-uniform response to the tested variables. Underlying species-specific responses and adaptations to the long-term trend in atmospheric CO2 bias even after a trend correction identified dominant environmental factors triggering the tree-ring &delta 13C at our site. However, analysis of individual intrinsic water-use efficiency in juniper and spruce trees indicated a species-specific adaptation strategy to climate change. 18O of both species revealed highly significant sensitivities with a high degree of coherence to hydroclimate variables during the growing season. The obtained &delta isotope relationships. Therefore, various climate parameters from a local meteorological station and from the CRU 4.02 dataset were used. Tree-ring &delta climate relationships can even be retained using a species mean. In contrast, the individual &delta 13C) isotopes were analyzed for a common period of 1685&ndash 2007 AD to investigate climate&ndash 18O) and carbon (&delta 18O&ndash

Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
2,909 Research products, page 1 of 291
  • Open Access English
    Authors: 
    Mette Olivarius; Henrik Vosgerau; Lars Henrik Nielsen; Rikke Weibel; Sebastian N. Malkki; Benjamin D. Heredia; Tonny B. Thomsen;
    Publisher: Multidisciplinary Digital Publishing Institute

    The significance of mineralogical maturity as a provenance indicator has long been debated and we use this study to demonstrate that it can indeed be a powerful tool to track the distribution of sandstone reservoirs. We investigate the cause of the pronounced geographic and stratigraphic differences in mineralogical composition that are found in the Upper Triassic–Lower Jurassic Gassum Formation across the Norwegian–Danish Basin and surrounding areas. Zircon U-Pb dating of 46 sandstone samples including analysis of 4816 detrital grains are combined with quantifications of the detrital mineralogical composition and placed in a sequence stratigraphic framework. The results show that the Gassum Formation can be divided into a southeastern region with high mineralogical maturity and a less mature region to the northwest with more feldspars, rock fragments, micas, and heavy minerals. Both the mineralogical assemblage and the provenance signature have been thoroughly homogenized in the SE region where sediment supplies from the Fennoscandian Shield and the Variscan Orogen are evident. In the NW region, sediment was initially supplied from Fennoscandia only, but the provenance abruptly changed from the Telemarkia Terrane to comprising also the more distant Caledonian Orogen resulting in a different mineralogical assemblage. The change occurred during a basinwide regression and may be caused by tectonic movements in the hinterland that permanently changed the composition of the sediment supplied to the basin.

  • Open Access English
    Authors: 
    Apoorv Jyoti; Ralf Haese;
    Publisher: Multidisciplinary Digital Publishing Institute

    Micro-computed tomography (micro-CT) is increasingly utilized to image the pore network and to derive petrophysical properties in combination with modelling software. The effect of micro-CT image resolution and size on the accuracy of the derived petrophysical properties is addressed in this study using a relatively homogenous sandstone and a heterogenous, highly porous bioclastic limestone. Standard laboratory procedures including NMR (nuclear magnetic resonance) analysis, micro-CT analysis at different image resolutions and sizes and pore-scale flow simulations were used to determine and compare petrophysical properties. NMR-derived pore-size distribution (PSD) was comparable to the micro-CT-derived PSD at a resolution of 7 µm for both the rock types. Porosity was higher using the water saturation method as compared to the NMR method in both rocks. The resolution did not show a significant effect on the porosity of the homogeneous sandstone, but porosity in the heterogeneous limestone varies depending on the location of the sub-sample. The transport regime in the sandstone was derived by simulations and changed with the resolution of the micro-CT image. The transport regime in the sandstone was advection-dominated at higher image resolution and diffusion-dominated when using a lower image resolution. In contrast, advection was the dominant transport regime for the limestone based on simulations using higher and lower image resolutions. Simulation-derived permeability for a 400 Voxel3 image at 7 µm resolution in the Berea sandstone matched laboratory results, although local heterogeneity within the rock plays an integral role in the permeability estimation within the sub-sampled images. The simulation-derived permeability was highly variable in the Mount Gambier limestone depending on the image size and resolution with the closest value to a laboratory result simulated with an image resolution of 2.5 µm and a size of 300 Voxel3. Overall, the study demonstrates the need to decide on micro-CT parameters depending on the type of petrophysical property of interest and the degree of heterogeneity within the rock types.

  • Open Access
    Authors: 
    M. Meyer; Ingo Pfeffer; Carsten Jürgens;
    Publisher: MDPI AG
    Country: Germany

    While Light Detection and Ranging (LiDAR) revolutionized archaeological prospection and different visualizations were developed, an automated detection of cultural heritage still poses a significant challenge. Therefore, geographers and archaeologists from Westphalia, Germany are developing automated workflows for classifying field monuments from special terrain models. For this project, a combination of GIS, Python, and Object-Based Image Analysis (OBIA) is used. It focuses on three common types of monuments: Ridge and Furrow areas, Burial Mounds, and Motte-and-Bailey castles. The latter two are not classified binary, but in multiple classes, depending on their degree of erosion. This simplifies interpretation by highlighting the most interesting structures without losing the others. The results confirm that OBIA is suitable for detecting field monuments with hit rates of ~90%. A drawback is its dependency on the use of special terrain models like the Difference Map. Further limitations arise in complex terrain situations.

  • Open Access English
    Authors: 
    Dale W. Griffin; Erin E. Silvestri; Charlena Yoder Bowling; Timothy Boe; David B. Smith; Tonya L. Nichols;
    Publisher: MDPI AG

    Soil geochemical data from sample sites in counties that reported occurrences of anthrax in wildlife and livestock since 2000 were evaluated against counties within the same states (MN, MT, ND, NV, OR, SD and TX) that did not report occurrences. These data identified the elements, calcium (Ca), manganese (Mn), phosphorus (P) and strontium (Sr), as having statistically significant differences in concentrations between county type (anthrax occurrence versus no occurrence). Tentative threshold values of the lowest concentrations of each of these elements (Ca = 0.43 wt %, Mn = 142 mg/kg, P = 180 mg/kg and Sr = 51 mg/kg) and average concentrations (Ca = 1.3 wt %, Mn = 463 mg/kg, P = 580 mg/kg and Sr = 170 mg/kg) were identified from anthrax-positive counties as prospective investigative tools in determining whether an outbreak had “potential” or was “likely” at any given geographic location in the contiguous United States.

  • Open Access English
    Authors: 
    Panagiotis Sitarenios; Francesca Casini;
    Publisher: MDPI AG
    Country: Italy

    This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.

  • Open Access English
    Authors: 
    Francesco Castelli; Salvatore Grasso; Valentina Lentini; Maria Stella Vanessa Sammito;
    Publisher: MDPI AG
    Country: Italy

    This paper reports on the results of soil-foundation numerical modelling and the seismic response of a cooling tower founded on piles of a petrochemical facility located in the city of Augusta (Sicily, Italy). The city was affected in the past by some destructive earthquakes (1693, 1848, and 1990) that damaged a large territory of Southeastern Sicily, which was characterized by a very high seismic hazard. With this aim, the paper reports the FEM modelling of the seismic behaviour of the coupled soil-structure system. To determine the soil profile and the geotechnical characteristics, laboratory and in situ investigations were carried out in the studied area. The seismic event occurred in January 1693 and has been chosen as a scenario earthquake. Moreover, a parametric study with different input motions has also been carried out. A Mohr-Coulomb model has been adopted for the soil, and structural elements have been simulated by means of an elastic constitutive model. Two different vertical alignments have been analysed, considering both the free-field condition and the soil-structure interaction. The dynamic response has been investigated in terms of accelerations, response spectra, and amplification functions. The results have also been compared with those provided by Italian technical regulations. Finally, the seismic response of the coupled soil-structure system has been further examined in terms of peak bending moments along the pile foundation, emphasizing the possibility of a kinematic interaction on piles induced by the seismic action.

  • Open Access English
    Authors: 
    Dominik Gottron; Andreas Henk;
    Publisher: Multidisciplinary Digital Publishing Institute

    A numerical characterization of a fractured rock mass and its mechanical behavior using a discontinuum approach was carried out utilizing lattice-spring-based synthetic rock mass (LS-SRM) models. First, LS-SRM models on a laboratory scale were created to reproduce standard rock mechanical tests on Triassic sandstone samples from a quarry in Germany. Subsequently, the intact rock properties were upscaled to an element volume representative for geotechnical applications, recalibrated and combined with a Discrete Fracture Network (DFN) model. The resulting fractured rock mass properties are compared to predictions from empirical relationships based on rock mass classification schemes and the DFN-Oda-Geomechanics approach. Modeling results reveal a significant reduction in the strength of the fractured rock mass compared to the intact rock, showing a high agreement with empirically calculated values. Results for the deformation modulus reveal a significant reduction induced by the fracture network and a good agreement compared to the results obtained by other approaches. It is shown that the LS-SRM allows analyzing the complex mechanical behavior during failure of rock masses, including crack initiation, propagation and coalescence. The resulting rock mass properties are key parameters for a wide range of geotechnical applications and can be used for large-scale numerical modeling as well.

  • Open Access English
    Authors: 
    Elizabeth M. Morris;
    Publisher: Multidisciplinary Digital Publishing Institute

    An empirical model for the densification of dry snow has been calibrated using strain-rate data from Pine Island Glacier basin, Antarctica. The model provides for a smooth transition between Stage 1 and Stage 2 densification, and leads to an analytical expression for density as a function of depth. It introduces two new parameters with a simple physical basis: transition density &rho 3 and M = 7 for the region. Using these values, the transition model produces better simulations of snow profiles from Pine Island Glacier basin than the well-established Herron and Langway and Ligtenberg models, both of which postulate abrupt transition. Simulation of density profiles from other sites using M = 7 produces the best values of &rho 3 for a low accumulation site, suggesting that transition density may vary with climatic conditions. The variation of bubble close-off depth and depth-integrated porosity with mean annual accumulation predicted by the transition model is similar to that predicted by the Simonsen model tuned for Greenland. T and a scaling factor, M, which controls the extent of the transition zone. The standard (Herron and Langway) parameterization is used for strain rates away from the transition zone. Calibration, though tentative, produces best parameter values of &rho 3 for a high accumulation site and 530 kg m &minus T = 580 kg m &minus T = 550 kg m &minus

  • Open Access
    Authors: 
    N. E. Kozlov; Nikolay O. Sorokhtin; Eugeny V. Martynov;
    Publisher: MDPI AG

    The Kola region hosts numerous Paleozoic massifs of ultrabasic alkaline rocks and carbonatites with deposits of commercially valuable metals, such as iron, tantalum, niobium, and rare earth elements. These magmatic complexes are characterized by high contents of alkaline elements at generally low contents of SiO2 and/or Al2O3. In this study, we examined the precursors to the formation of the unique Paleozoic alkaline province through studying the early Precambrian stages in the evolution of the Kola collision area, from where these unique features probably originated. We mathematically modeled the changes in the chemical composition of these rocks. The obtained data can be used for metallogenic forecasting, which indicated a number of Precambrian objects in the region, namely, the Lapland Granulite Belt of the Kola region and granulite belts in Eurasia. The mathematical modeling performed during this research depicted a linear trend that defined the style of the changes in the chemical composition at the transition from the metaultrabasic-basic rocks of the Lapland granulite belt to the group of belts in Eurasia. These differences are statistically significant with respect to the obtained trend (chemical composition projected on the trend), mainly manifested as increased SiO2 and Al2O3 contents with a decreasing total alkalis content, which is opposite to the indicated trends of the changing chemical composition in the Paleozoic alkaline rock units of the Kola region. We concluded that one of the reasons for the unique composition of the Paleozoic magmatism products could be a specific feature of the earlier Neoarchean stages of the tectonic-magmatic activity in the northeastern Baltic Shield, which implies a close relationship between later geological events and the early Precambrian history, at least in the study area.

  • Open Access
    Authors: 
    Grießinger, Jussi; Bräuning, Achim; Helle, Gerhard; Schleser, Gerhard Hans; Hochreuther, Philipp; Meier, Wolfgang Jens-Henrik; Zhu, Haifeng;
    Country: Germany

    Tree-rings are recorders of environmental signals and are therefore often used to reconstruct past environmental conditions. In this paper, we present four annually resolved, multi-centennial tree-ring isotope series from the southeastern Tibetan plateau. The investigation site, where juniper and spruce trees jointly occur, is one of the highest known tree-stands in the world. Tree ring cellulose oxygen (&delta 13C series indicated a weaker and non-uniform response to the tested variables. Underlying species-specific responses and adaptations to the long-term trend in atmospheric CO2 bias even after a trend correction identified dominant environmental factors triggering the tree-ring &delta 13C at our site. However, analysis of individual intrinsic water-use efficiency in juniper and spruce trees indicated a species-specific adaptation strategy to climate change. 18O of both species revealed highly significant sensitivities with a high degree of coherence to hydroclimate variables during the growing season. The obtained &delta isotope relationships. Therefore, various climate parameters from a local meteorological station and from the CRU 4.02 dataset were used. Tree-ring &delta climate relationships can even be retained using a species mean. In contrast, the individual &delta 13C) isotopes were analyzed for a common period of 1685&ndash 2007 AD to investigate climate&ndash 18O) and carbon (&delta 18O&ndash

Send a message
How can we help?
We usually respond in a few hours.