Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to five years. We then compared adult phenotypes between the two populations, as well as trait-specific Qst and Fst . Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. Qst - Fst comparisons revealed that the traits divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a Qst - Fst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits. Data filesArchive.zip
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.31tc3s8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.31tc3s8&type=result"></script>');
-->
</script>
doi: 10.5061/dryad.2s75n
Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l. The slender sole Lyopsetta exilis was abundant in severe hypoxia and diminished as oxygen increased in the summer. This planktivore may be responding to changes in the depth of the diurnal migration of zooplankton. While the squat lobster Munida quadrispina was common at all times, juveniles disappeared in fluctuating conditions. Despite low oxygen conditions, animal densities were high indicating that the risk from hypoxia is balanced by factors such as food availability and escape from less tolerant predators. As hypoxia increases on the continental shelf, we expect benthic communities to become dominated by low diversity, hypoxia-tolerant species of low commercial significance. CHONe_MB08_Matabos_data_year
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.2s75n&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.2s75n&type=result"></script>');
-->
</script>
Related Article: Luke J. Murphy, Adam J. Ruddy, Robert McDonald, Michael J. Ferguson, Laura Turculet|2018|Eur.J.Inorg.Chem.|2018|4481|doi:10.1002/ejic.201800915 Related Article: Luke J Murphy, Adam J Ruddy, Robert McDonald, Michael J. Ferguson, Laura Turculet|2018|Eur.J.Inorg.Chem.||4481|doi:10.1002/ejic.201800915
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc20bz7l&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc20bz7l&type=result"></script>');
-->
</script>
Related Article: Maryam F. Abdollahi, Yuming Zhao|2021|J.Org.Chem.|86|14855|doi:10.1021/acs.joc.1c01633
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc26ckjp&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc26ckjp&type=result"></script>');
-->
</script>
An entry from the Inorganic Crystal Structure Database, the world’s repository for inorganic crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the joint CCDC and FIZ Karlsruhe Access Structures service and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures. Related Article: Wenlong Yina, Dong Zhang, Molin Zhou, Abishek K. Iyer, Jan-Hendrik Pöhls, Jiyong Yao, Arthur Mar|2018|J.Solid State Chem.|265|167|doi:10.1016/j.jssc.2018.05.041
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25505/fiz.icsd.cc20fd84&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25505/fiz.icsd.cc20fd84&type=result"></script>');
-->
</script>
Fermilab-Tevatron. Measurement of the differential cross sections for the production of an isolated photon with an associated jet in PBAR P collisions at centre of mass energy 1.96 TeV. Photons are reconstructed in the central absolute rapidity region & lt; 1.0 and having PT in the range 30 to 400 GeV while the jets are reconstructed in either the central rapidity region & lt; 0.8 or in the forward absolute rapidity region 1.5 to 2.5 with jet energies & gt; 15 GeV. Differential cross sections and their ratios are tabulated for different regions differing by the relative orientations of the photon and the jet in rapidity. The data has an integrated luminosity of 1.0 fb-1. Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) > 0.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.50549.v1/t1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.50549.v1/t1&type=result"></script>');
-->
</script>
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton--proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\rm T}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t}\rightarrow WWb\bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\rm T}$ > 500 GeV and $p_{\rm T}$ > 350 GeV, respectively, is $331 \pm 3 \rm{(stat.)} \pm 39 \rm{(syst.)}$ fb. This is approximately 20% lower than the prediction of $398^{+48}_{-49}$ fb by POWHEG+PYTHIA8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \rm{(stat.)} \pm 0.25 \rm{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators. Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.115142.v1/t675&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.115142.v1/t675&type=result"></script>');
-->
</script>
CERN-LHC. Experimental measurements of the correlations between the elliptic or triangular flow coefficients, $v_m$ ($m=2$ or 3), and other flow harmonics, $v_n$ ($n=2$ to 5) in lead-lead collisions. The data tables are linked to the corresponding figure number in the paper as well as additional plots in reference. $v_{4}$ data for various $q_3$ bins, Centrality 0-5%.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.68950.v1/t79&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.68950.v1/t79&type=result"></script>');
-->
</script>
A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}$ = 13 TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The result is interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell$, $\ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos. Detection efficiency per decay as a function of the transverse decay radius Rxy and the dilepton pT for a LLP mass of 250 GeV and LLP -> emu.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.90606.v1/t50&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.90606.v1/t50&type=result"></script>');
-->
</script>
DESY-HERA. Measurement of the production of D*(2010)+- mesons in diffractive deep inelastic scattering identified by a large rapidity gap in the final state. The data come from the 1998-2000 HERA running period with an electron(positron) beam of 27.5 GeV colliding with 920 GeV protons at a centre-of-mass energy of318 GeV. The data have a total integrated luminosity of 82 pb-1 (16.4 +- 0.3 e- p and 65.3 +- 1.5 e+ p).. X = Q**2/(2P.q). X(C=D*) = 2*ABS(P(C=D*))/W. X(NAME=POMERON) = (Q**2+M(X)*2)/Q**2+W**2).. BETA = X/X(NAME=POMERON) = Q**2/(Q**2+W**2). The differential cross section as a function of LOG(Q**2).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.43831.v1/t9&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.43831.v1/t9&type=result"></script>');
-->
</script>
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to five years. We then compared adult phenotypes between the two populations, as well as trait-specific Qst and Fst . Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. Qst - Fst comparisons revealed that the traits divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a Qst - Fst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits. Data filesArchive.zip
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.31tc3s8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.31tc3s8&type=result"></script>');
-->
</script>
doi: 10.5061/dryad.2s75n
Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l. The slender sole Lyopsetta exilis was abundant in severe hypoxia and diminished as oxygen increased in the summer. This planktivore may be responding to changes in the depth of the diurnal migration of zooplankton. While the squat lobster Munida quadrispina was common at all times, juveniles disappeared in fluctuating conditions. Despite low oxygen conditions, animal densities were high indicating that the risk from hypoxia is balanced by factors such as food availability and escape from less tolerant predators. As hypoxia increases on the continental shelf, we expect benthic communities to become dominated by low diversity, hypoxia-tolerant species of low commercial significance. CHONe_MB08_Matabos_data_year
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.2s75n&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.2s75n&type=result"></script>');
-->
</script>
Related Article: Luke J. Murphy, Adam J. Ruddy, Robert McDonald, Michael J. Ferguson, Laura Turculet|2018|Eur.J.Inorg.Chem.|2018|4481|doi:10.1002/ejic.201800915 Related Article: Luke J Murphy, Adam J Ruddy, Robert McDonald, Michael J. Ferguson, Laura Turculet|2018|Eur.J.Inorg.Chem.||4481|doi:10.1002/ejic.201800915
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc20bz7l&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc20bz7l&type=result"></script>');
-->
</script>
Related Article: Maryam F. Abdollahi, Yuming Zhao|2021|J.Org.Chem.|86|14855|doi:10.1021/acs.joc.1c01633
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc26ckjp&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5517/ccdc.csd.cc26ckjp&type=result"></script>');
-->
</script>
An entry from the Inorganic Crystal Structure Database, the world’s repository for inorganic crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the joint CCDC and FIZ Karlsruhe Access Structures service and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures. Related Article: Wenlong Yina, Dong Zhang, Molin Zhou, Abishek K. Iyer, Jan-Hendrik Pöhls, Jiyong Yao, Arthur Mar|2018|J.Solid State Chem.|265|167|doi:10.1016/j.jssc.2018.05.041
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25505/fiz.icsd.cc20fd84&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25505/fiz.icsd.cc20fd84&type=result"></script>');
-->
</script>
Fermilab-Tevatron. Measurement of the differential cross sections for the production of an isolated photon with an associated jet in PBAR P collisions at centre of mass energy 1.96 TeV. Photons are reconstructed in the central absolute rapidity region & lt; 1.0 and having PT in the range 30 to 400 GeV while the jets are reconstructed in either the central rapidity region & lt; 0.8 or in the forward absolute rapidity region 1.5 to 2.5 with jet energies & gt; 15 GeV. Differential cross sections and their ratios are tabulated for different regions differing by the relative orientations of the photon and the jet in rapidity. The data has an integrated luminosity of 1.0 fb-1. Differential cross section for the region ABS(YRAP(JET)) < 0.8 and YRAP(GAMMA)*YRAP(JET) > 0.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17182/hepdata.50549.v1/t1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |