Filters
Clear AllLoading
apps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishBuehler, Stefan A.; Prange, Marc; Mrziglod, John; John, Viju O.; Burgdorf, Martin; Lemke, Oliver;Opportunistic constant target matching is a new method for satellite intercalibration. It solves a long-standing issue with the traditional simultaneous nadir overpass (SNO) method, namely, that it typically provides only data points with cold brightness temperatures for humidity sounding instruments on sun-synchronous satellites. In the new method, a geostationary infrared sensor (SEVIRI) is used to select constant target matches for two different microwave sensors (MHS on NOAA 18 and Metop A). We discuss the main assumptions and limitations of the method and explore its statistical properties with a simple Monte Carlo simulation. The method was tested in a simple case study with real observations for this combination of satellites for MHS Channel 3 at 183 ± 1 GHz, the upper tropospheric humidity channel. For the studied 3-month test period, real observations are found to behave consistently with the simulations, increasing our confidence that the method can be a valuable tool for intercalibration efforts. For the selected case study, the new method confirms that the bias between NOAA 18 and Metop A MHS Channel 3 is very small, with absolute value below 0.05 K.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::8f407b1803abdebc68b4ddcaba87e431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishGossler, Manuel A.; Bayer, Peter; Rau, Gabriel C.; Einsiedl, Florian; Zosseder, Kai;Heat transport in natural porous media, such as aquifers or streambeds, is generally modeled assuming local thermal equilibrium (LTE) between the fluid and solid phases. Yet, the mathematical and hydrogeological conditions and implications of this simplification have not been fully established for natural porous media. To quantify the occurrence and effects of local thermal disequilibrium during heat transport, we systematically compared thermal breakthrough curves from a LTE with those calculated using a local thermal nonequilibrium (LTNE) model, explicitly allowing for different temperatures in the fluid and solid phases. For the LTNE model, we developed a new correlation for the heat transfer coefficient representative of the conditions in natural porous aquifers using six published experimental results. By conducting an extensive parameter study (>50,000 simulations), we show that LTNE effects do not occur for grain sizes smaller than 7 mm or for groundwater flow velocities that are slower than 1.6 m day−1. The limits of LTE are likely exceeded in gravel aquifers or in the vicinity of pumped bores. For such aquifers, the use of a LTE model can lead to an underestimation of the effective thermal dispersion by a factor of up to 30 or higher, while the advective thermal velocity remains unaffected for most conditions. Based on a regression analysis of the simulation results, we provide a criterion which can be used to determine if LTNE effects are expected for particular conditions.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::33530bab9667834877847a7b7aa5e446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 GermanARGE GMIT, Bonn Die Ausgabe der Geowissenschaftlichen Mitteilungen vom März 2018 enthält die Themenblöcke: GEOfokus: (Der Bergbau geht – bleibt das Wissen? Steinkohlenbergbau und Geowissenschaften ), GEOaktiv (Wirtschaft, Beruf, Forschung und Lehre), GEOlobby (Gesellschaften, Verbände, Institutionen), GEOreport (Geowissenschaftliche Öffentlichkeitsarbeit, Tagungsberichte, Ausstellungen, Exkursionen, Publikationen), GEOszene (Personalia, Nachrufe). DFG, SUB Göttingen journal
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::b0eb7e689da726dfdea94bac6434ffbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishRugenstein, Maria; Bloch-Johnson, Jonah; Gregory, Jonathan; Andrews, Timothy; Mauritsen, Thorsten; Li, Chao; Frölicher, Thomas L.; Paynter, David; Danabasoglu, Gokhan; Yang, Shuting; Dufresne, Jean-Louis; Cao, Long; Schmidt, Gavin A.; Abe-Ouchi, Ayako; Geoffroy, Olivier; Knutti, Reto;The methods to quantify equilibrium climate sensitivity are still debated. We collect millennial-length simulations of coupled climate models and show that the global mean equilibrium warming is higher than those obtained using extrapolation methods from shorter simulations. Specifically, 27 simulations with 15 climate models forced with a range of CO2 concentrations show a median 17% larger equilibrium warming than estimated from the first 150 years of the simulations. The spatial patterns of radiative feedbacks change continuously, in most regions reducing their tendency to stabilizing the climate. In the equatorial Pacific, however, feedbacks become more stabilizing with time. The global feedback evolution is initially dominated by the tropics, with eventual substantial contributions from the mid-latitudes. Time-dependent feedbacks underscore the need of a measure of climate sensitivity that accounts for the degree of equilibration, so that models, observations, and paleo proxies can be adequately compared and aggregated to estimate future warming.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::46cccc7b29f1e9cbe45e54aec13929e8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishDietze, H.; Löptien, U.; Hordoir, R.; Heinemann, M.; Huiskamp, W.; Schneider, B.;The isotopic composition of Si in biogenic silica (BSi), such as opal buried in the oceans' sediments, has changed over time. Paleorecords suggest that the isotopic composition, described in terms of δ30Si, was generally much lower during glacial times than today. There is consensus that this variability is attributable to differing environmental conditions at the respective time of BSi production and sedimentation. The detailed links between environmental conditions and the isotopic composition of BSi in the sediments remain, however, poorly constrained. In this study, we explore the effects of a suite of offset boundary conditions during the Last Glacial Maximum (LGM) on the isotopic composition of BSi archived in sediments in an Earth System Model of intermediate complexity (EMIC). Our model results suggest that a change in the isotopic composition of Si supply to the glacial ocean is sufficient to explain the observed overall low(er) glacial δ30Si in BSi. All other processes explored trigger model responses of either wrong sign or magnitude or are inconsistent with a recent estimate of bottom water oxygenation in the Atlantic Sector of the Southern Ocean. Caveats, mainly associated with generic uncertainties in today's pelagic biogeochemical modules, remain.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesOther ORP type . 2020Data sources: Norwegian Open Research ArchivesDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::f932dfec2444c4ce0bcc107131ce7258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishTanneberger, Franziska; Appulo, Lea; Ewert, Stefan; Lakner, Sebastian; Ó Brolcháin, Niall; Peters, Jan; Wichtmann, Wendelin;Peatlands are lands with a peat layer at the surface, containing a large proportion of organic carbon. Such lands cover ≈1 000 000 km2 in Europe, which is almost 10% of the total surface area. In many countries, peatlands have been artificially drained over centuries, leading to not only enormous emissions of CO2 but also soil subsidence, mobilization of nutrients, higher flood risks, and loss of biodiversity. These problems can largely be solved by stopping drainage and rewetting the land. Wet peatlands do not release CO2, can potentially sequester carbon, help to improve water quality, provide habitat for rare and threatened biodiversity, and can still be used for production of biomass (“paludiculture”). Wisely adjusted land use on peatlands can substantially contribute to low-emission goals and further benefits for farmers, the economy, society, and the environment.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::bc2a2a04aceac709c0d8fb59859869b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2017 EnglishRoberts, Stephen J.; Monien, Patrick; Foster, Louise C.; Loftfield, Julia; Hocking, Emma P.; Schnetger, Bernhard; Pearson, Emma J.; Juggins, Steve; Fretwell, Peter; Ireland, Louise; Ochyra, Ryszard; Haworth, Anna R.; Allen, Claire S.; Moreton, Steven G.; Davies, Sarah J.; Brumsack, Hans-Jürgen; Bentley, Michael J.; Hodgson, Dominic A.;Changes in penguin populations on the Antarctic Peninsula have been linked to several environmental factors, but the potentially devastating impact of volcanic activity has not been considered. Here we use detailed biogeochemical analyses to track past penguin colony change over the last 8,500 years on Ardley Island, home to one of the Antarctic Peninsula’s largest breeding populations of gentoo penguins. The first sustained penguin colony was established on Ardley Island c. 6,700 years ago, pre-dating sub-fossil evidence of Peninsula- wide occupation by c. 1,000 years. The colony experienced five population maxima during the Holocene. Overall, we find no consistent relationships with local-regional atmospheric and ocean temperatures or sea-ice conditions, although the colony population maximum, c. 4,000–3,000 years ago, corresponds with regionally elevated temperatures. Instead, at least three of the five phases of penguin colony expansion were abruptly ended by large eruptions from the Deception Island volcano, resulting in near-complete local extinction of the colony, with, on average, 400–800 years required for sustainable recovery. https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3086_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3080_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3081_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3082_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3084_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3085_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3083_ESM.xlsx research
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::8a1f1e8c92d7e139146b7f2a6cfbb867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishDu, Muye; Kleidon, Axel; Sun, Fubao; Renner, Maik; Liu, Wenbin;Nonrainy days have rather different hydrologic and radiative conditions than rainy days, but few investigations considered how these different conditions contribute to the observed global warming. Here, we show that global warming is considerably stronger on nonrainy days using observations from China. We find that trends in mean temperature on nonrainy days are about 0.1 ° C/10 yr higher than on rainy days, and that about 80% of the total temperature increase is contributed by nonrainy days. The main reason is likely to be a stronger sensitivity of downwelling longwave radiation to greenhouse forcing on nonrainy days due to fewer clouds and water vapor compared with rainy days, which is not a hydrological effect but mainly a radiative effect. Our findings are consistent with the stronger mean temperature trends in drier regions and imply that the different temperature sensitivities on nonrainy and rainy days may have profound effects on natural and social systems.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::d87896c2cbab1cc30f5ba7dafc8bcacc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishBartkowiak, Maciej; Prokeš, Karel; Fromme, Michael; Budack, Anne; Dirlick, Juliane; Prokhnenko, Oleksandr;The Extreme Environment Diffractometer was a neutron time-of-flight instrument equipped with a constant-field hybrid magnet providing magnetic fields up to 26 T. The magnet infrastructure and sample environment imposed limitations on the geometry of the experiment, making it necessary to plan the experiment with care. EXEQ is the software tool developed to allow users of the instrument to find the optimal sample orientation for their diffraction experiment. InEXEQ fulfilled the same role for the inelastic neutron scattering experiments. The source code of the software is licensed under the GNU General Public Licence 3, allowing it to be used by other facilities and adapted for use on other instruments.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::1ea33e6962b960e15dd79fdba0657863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishDiehl, Alexander; de Ronde, Cornel E. J.; Bach, Wolfgang;Diehl, Alexander; de Ronde, Cornel E. J.; Bach, Wolfgang;https://doi.org/10 .1594/PANGAEA.920208 research
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::c8a86999acdc407ed80e927dd8805be9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishBuehler, Stefan A.; Prange, Marc; Mrziglod, John; John, Viju O.; Burgdorf, Martin; Lemke, Oliver;Opportunistic constant target matching is a new method for satellite intercalibration. It solves a long-standing issue with the traditional simultaneous nadir overpass (SNO) method, namely, that it typically provides only data points with cold brightness temperatures for humidity sounding instruments on sun-synchronous satellites. In the new method, a geostationary infrared sensor (SEVIRI) is used to select constant target matches for two different microwave sensors (MHS on NOAA 18 and Metop A). We discuss the main assumptions and limitations of the method and explore its statistical properties with a simple Monte Carlo simulation. The method was tested in a simple case study with real observations for this combination of satellites for MHS Channel 3 at 183 ± 1 GHz, the upper tropospheric humidity channel. For the studied 3-month test period, real observations are found to behave consistently with the simulations, increasing our confidence that the method can be a valuable tool for intercalibration efforts. For the selected case study, the new method confirms that the bias between NOAA 18 and Metop A MHS Channel 3 is very small, with absolute value below 0.05 K.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::8f407b1803abdebc68b4ddcaba87e431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishGossler, Manuel A.; Bayer, Peter; Rau, Gabriel C.; Einsiedl, Florian; Zosseder, Kai;Heat transport in natural porous media, such as aquifers or streambeds, is generally modeled assuming local thermal equilibrium (LTE) between the fluid and solid phases. Yet, the mathematical and hydrogeological conditions and implications of this simplification have not been fully established for natural porous media. To quantify the occurrence and effects of local thermal disequilibrium during heat transport, we systematically compared thermal breakthrough curves from a LTE with those calculated using a local thermal nonequilibrium (LTNE) model, explicitly allowing for different temperatures in the fluid and solid phases. For the LTNE model, we developed a new correlation for the heat transfer coefficient representative of the conditions in natural porous aquifers using six published experimental results. By conducting an extensive parameter study (>50,000 simulations), we show that LTNE effects do not occur for grain sizes smaller than 7 mm or for groundwater flow velocities that are slower than 1.6 m day−1. The limits of LTE are likely exceeded in gravel aquifers or in the vicinity of pumped bores. For such aquifers, the use of a LTE model can lead to an underestimation of the effective thermal dispersion by a factor of up to 30 or higher, while the advective thermal velocity remains unaffected for most conditions. Based on a regression analysis of the simulation results, we provide a criterion which can be used to determine if LTNE effects are expected for particular conditions.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::33530bab9667834877847a7b7aa5e446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 GermanARGE GMIT, Bonn Die Ausgabe der Geowissenschaftlichen Mitteilungen vom März 2018 enthält die Themenblöcke: GEOfokus: (Der Bergbau geht – bleibt das Wissen? Steinkohlenbergbau und Geowissenschaften ), GEOaktiv (Wirtschaft, Beruf, Forschung und Lehre), GEOlobby (Gesellschaften, Verbände, Institutionen), GEOreport (Geowissenschaftliche Öffentlichkeitsarbeit, Tagungsberichte, Ausstellungen, Exkursionen, Publikationen), GEOszene (Personalia, Nachrufe). DFG, SUB Göttingen journal
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::b0eb7e689da726dfdea94bac6434ffbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishRugenstein, Maria; Bloch-Johnson, Jonah; Gregory, Jonathan; Andrews, Timothy; Mauritsen, Thorsten; Li, Chao; Frölicher, Thomas L.; Paynter, David; Danabasoglu, Gokhan; Yang, Shuting; Dufresne, Jean-Louis; Cao, Long; Schmidt, Gavin A.; Abe-Ouchi, Ayako; Geoffroy, Olivier; Knutti, Reto;The methods to quantify equilibrium climate sensitivity are still debated. We collect millennial-length simulations of coupled climate models and show that the global mean equilibrium warming is higher than those obtained using extrapolation methods from shorter simulations. Specifically, 27 simulations with 15 climate models forced with a range of CO2 concentrations show a median 17% larger equilibrium warming than estimated from the first 150 years of the simulations. The spatial patterns of radiative feedbacks change continuously, in most regions reducing their tendency to stabilizing the climate. In the equatorial Pacific, however, feedbacks become more stabilizing with time. The global feedback evolution is initially dominated by the tropics, with eventual substantial contributions from the mid-latitudes. Time-dependent feedbacks underscore the need of a measure of climate sensitivity that accounts for the degree of equilibration, so that models, observations, and paleo proxies can be adequately compared and aggregated to estimate future warming.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::46cccc7b29f1e9cbe45e54aec13929e8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishDietze, H.; Löptien, U.; Hordoir, R.; Heinemann, M.; Huiskamp, W.; Schneider, B.;The isotopic composition of Si in biogenic silica (BSi), such as opal buried in the oceans' sediments, has changed over time. Paleorecords suggest that the isotopic composition, described in terms of δ30Si, was generally much lower during glacial times than today. There is consensus that this variability is attributable to differing environmental conditions at the respective time of BSi production and sedimentation. The detailed links between environmental conditions and the isotopic composition of BSi in the sediments remain, however, poorly constrained. In this study, we explore the effects of a suite of offset boundary conditions during the Last Glacial Maximum (LGM) on the isotopic composition of BSi archived in sediments in an Earth System Model of intermediate complexity (EMIC). Our model results suggest that a change in the isotopic composition of Si supply to the glacial ocean is sufficient to explain the observed overall low(er) glacial δ30Si in BSi. All other processes explored trigger model responses of either wrong sign or magnitude or are inconsistent with a recent estimate of bottom water oxygenation in the Atlantic Sector of the Southern Ocean. Caveats, mainly associated with generic uncertainties in today's pelagic biogeochemical modules, remain.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesOther ORP type . 2020Data sources: Norwegian Open Research ArchivesDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::f932dfec2444c4ce0bcc107131ce7258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishTanneberger, Franziska; Appulo, Lea; Ewert, Stefan; Lakner, Sebastian; Ó Brolcháin, Niall; Peters, Jan; Wichtmann, Wendelin;Peatlands are lands with a peat layer at the surface, containing a large proportion of organic carbon. Such lands cover ≈1 000 000 km2 in Europe, which is almost 10% of the total surface area. In many countries, peatlands have been artificially drained over centuries, leading to not only enormous emissions of CO2 but also soil subsidence, mobilization of nutrients, higher flood risks, and loss of biodiversity. These problems can largely be solved by stopping drainage and rewetting the land. Wet peatlands do not release CO2, can potentially sequester carbon, help to improve water quality, provide habitat for rare and threatened biodiversity, and can still be used for production of biomass (“paludiculture”). Wisely adjusted land use on peatlands can substantially contribute to low-emission goals and further benefits for farmers, the economy, society, and the environment.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::bc2a2a04aceac709c0d8fb59859869b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2017 EnglishRoberts, Stephen J.; Monien, Patrick; Foster, Louise C.; Loftfield, Julia; Hocking, Emma P.; Schnetger, Bernhard; Pearson, Emma J.; Juggins, Steve; Fretwell, Peter; Ireland, Louise; Ochyra, Ryszard; Haworth, Anna R.; Allen, Claire S.; Moreton, Steven G.; Davies, Sarah J.; Brumsack, Hans-Jürgen; Bentley, Michael J.; Hodgson, Dominic A.;Changes in penguin populations on the Antarctic Peninsula have been linked to several environmental factors, but the potentially devastating impact of volcanic activity has not been considered. Here we use detailed biogeochemical analyses to track past penguin colony change over the last 8,500 years on Ardley Island, home to one of the Antarctic Peninsula’s largest breeding populations of gentoo penguins. The first sustained penguin colony was established on Ardley Island c. 6,700 years ago, pre-dating sub-fossil evidence of Peninsula- wide occupation by c. 1,000 years. The colony experienced five population maxima during the Holocene. Overall, we find no consistent relationships with local-regional atmospheric and ocean temperatures or sea-ice conditions, although the colony population maximum, c. 4,000–3,000 years ago, corresponds with regionally elevated temperatures. Instead, at least three of the five phases of penguin colony expansion were abruptly ended by large eruptions from the Deception Island volcano, resulting in near-complete local extinction of the colony, with, on average, 400–800 years required for sustainable recovery. https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3086_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3080_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3081_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3082_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3084_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3085_ESM.xlsx https://static-content.springer.com/esm/art%3A10.1038%2Fncomms14914/MediaObjects/41467_2017_BFncomms14914_MOESM3083_ESM.xlsx research
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::8a1f1e8c92d7e139146b7f2a6cfbb867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishDu, Muye; Kleidon, Axel; Sun, Fubao; Renner, Maik; Liu, Wenbin;Nonrainy days have rather different hydrologic and radiative conditions than rainy days, but few investigations considered how these different conditions contribute to the observed global warming. Here, we show that global warming is considerably stronger on nonrainy days using observations from China. We find that trends in mean temperature on nonrainy days are about 0.1 ° C/10 yr higher than on rainy days, and that about 80% of the total temperature increase is contributed by nonrainy days. The main reason is likely to be a stronger sensitivity of downwelling longwave radiation to greenhouse forcing on nonrainy days due to fewer clouds and water vapor compared with rainy days, which is not a hydrological effect but mainly a radiative effect. Our findings are consistent with the stronger mean temperature trends in drier regions and imply that the different temperature sensitivities on nonrainy and rainy days may have profound effects on natural and social systems.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::d87896c2cbab1cc30f5ba7dafc8bcacc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishBartkowiak, Maciej; Prokeš, Karel; Fromme, Michael; Budack, Anne; Dirlick, Juliane; Prokhnenko, Oleksandr;The Extreme Environment Diffractometer was a neutron time-of-flight instrument equipped with a constant-field hybrid magnet providing magnetic fields up to 26 T. The magnet infrastructure and sample environment imposed limitations on the geometry of the experiment, making it necessary to plan the experiment with care. EXEQ is the software tool developed to allow users of the instrument to find the optimal sample orientation for their diffraction experiment. InEXEQ fulfilled the same role for the inelastic neutron scattering experiments. The source code of the software is licensed under the GNU General Public Licence 3, allowing it to be used by other facilities and adapted for use on other instruments.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::1ea33e6962b960e15dd79fdba0657863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2020 EnglishDiehl, Alexander; de Ronde, Cornel E. J.; Bach, Wolfgang;Diehl, Alexander; de Ronde, Cornel E. J.; Bach, Wolfgang;https://doi.org/10 .1594/PANGAEA.920208 research
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2497::c8a86999acdc407ed80e927dd8805be9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu