311 Research products, page 1 of 32
Loading
- Other research product . 2018Open Access EnglishAuthors:Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 moreSteinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; Schneider, B.; Segschneider, J.;Project: EC | EPOCA (211384), EC | MEECE (212085)
Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.
- Other research product . 2018Open Access EnglishAuthors:Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Project: EC | HERMIONE (226354)
The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560–760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560–2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock which would offer suitable habitat for benthic organisms. By comparing the locally restricted video observations and the broad-scale monitoring of a much larger and deeper seafloor area as derived by hydroacoustic seabed classification, it becomes obvious that habitat information obtained by in situ sampling may provide a rather scattered pattern about the entire seamount ecosystem. Solely with a combination of both methods, a satisfactory approach to describe the diverse characteristics of a seamount ecosystem can be derived which is in turn indispensable for future scientific monitoring campaigns as well as management and conservation purposes.
- Other research product . 2018Open Access EnglishAuthors:Dalmonech, D.; Foley, A. M.; Anav, A.; Friedlingstein, P.; Friend, A. D.; Kidston, M.; Willeit, M.; Zaehle, S.;Dalmonech, D.; Foley, A. M.; Anav, A.; Friedlingstein, P.; Friend, A. D.; Kidston, M.; Willeit, M.; Zaehle, S.;Project: EC | GREENCYCLESII (238366)
Atmospheric CO2 and climate projections for the next century vary widely across current Earth system models (ESMs), owing to different representations of the interactions between the marine and land carbon cycle on the one hand, and climate change and increasing atmospheric CO2 on the other hand. Several efforts have been made in the last years to analyse these differences in detail in order to suggest model improvements. Here we review these efforts and analyse their successes, but also the associated uncertainties that hamper the best use of the available observations to constrain and improve the ESMs models. The aim of this paper is to highlight challenges in improving the ESMs that result from: (i) uncertainty about important processes in terrestrial and marine ecosystems and their response to climate change and increasing atmospheric CO2; (ii) structural and parameter-related uncertainties in current land and marine models; (iii) uncertainties related to observations and the formulations of model performance metrics. We discuss the implications of these uncertainties for reducing the spread in future projections of ESMs and suggest future directions of work to overcome these uncertainties.
- Other research product . 2019Open Access EnglishAuthors:Geerlings, Nicole M. J.; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Middelburg, Jack J.; Meysman, Filip J. R.;Geerlings, Nicole M. J.; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Middelburg, Jack J.; Meysman, Filip J. R.;Project: NWO | The impact of cable bacte... (12983), EC | SEDBIOGEOCHEM2.0 (306933), EC | BIPHA (660481)
Cable bacteria are multicellular, filamentous microorganisms that are capable of transporting electrons over centimeter-scale distances. Although recently discovered, these bacteria appear to be widely present in the seafloor, and when active they exert a strong imprint on the local geochemistry. In particular, their electrogenic metabolism induces unusually strong pH excursions in aquatic sediments, which induces considerable mineral dissolution, and subsequent mineral reprecipitation. However, at present, it is unknown whether and how cable bacteria play an active or direct role in the mineral reprecipitation process. To this end we present an explorative study of the formation of sedimentary minerals in and near filamentous cable bacteria using a combined approach of electron microscopy and spectroscopic techniques. Our observations reveal the formation of polyphosphate granules within the cells and two different types of biomineral formation directly associated with multicellular filaments of these cable bacteria: (i) the attachment and incorporation of clay particles in a coating surrounding the bacteria and (ii) encrustation of the cell envelope by iron minerals. These findings suggest a complex interaction between cable bacteria and the surrounding sediment matrix, and a substantial imprint of the electrogenic metabolism on mineral diagenesis and sedimentary biogeochemical cycling. In particular, the encrustation process leaves many open questions for further research. For example, we hypothesize that the complete encrustation of filaments might create a diffusion barrier and negatively impact the metabolism of the cable bacteria.
- Other research product . 2018Open Access EnglishAuthors:Steinacher, M.; Joos, F.; Frölicher, T. L.; Plattner, G.-K.; Doney, S. C.;Steinacher, M.; Joos, F.; Frölicher, T. L.; Plattner, G.-K.; Doney, S. C.;Project: EC | EPOCA (211384)
Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.
- Other research product . 2018Open Access EnglishAuthors:Milzer, G.; Giraudeau, J.; Faust, J.; Knies, J.; Eynaud, F.; Rühlemann, C.;Milzer, G.; Giraudeau, J.; Faust, J.; Knies, J.; Eynaud, F.; Rühlemann, C.;Project: EC | CASE (238111)
Instrumental records from the Norwegian Sea and the Trondheimsfjord show evidence that changes of bottom water temperature and salinity in the fjord are linked to the salinity and temperature variability of the North Atlantic Current (NAC). Changes in primary productivity and salinity in the surface and intermediate water masses in the Trondheimsfjord as well as the fjord sedimentary budget are mainly driven by changes in riverine input. In this study we use 59 surface sediment samples that are evenly distributed in the fjord to examine whether dinocyst assemblages and stable isotope ratios of benthic foraminifera reflect the present-day hydrology and can be used as palaeoceanographic proxies. In general, modern benthic δ18O and δ13C values decrease from the fjord entrance towards the fjord head with lowest values close to river inlets. This is essentially explained by gradients in the amounts of fresh water and terrigenous organic matter delivered from the hinterland. The distribution of benthic δ13C ratios across the fjord is controlled by the origin (terrigenous vs. marine) of organic matter, local topography-induced variability in organic matter flux at the water–sediment interface, and organic matter degradation. The dinocyst assemblages display the variations in hydrography with respect to the prevailing currents, the topography, and the freshwater and nutrient supply from rivers. The strength and depth of the pycnocline in the fjord strongly vary seasonally and thereby affect water mass characteristics as well as nutrient availability, temporally creating local conditions that explain the observed species distribution. Our results prove that dinocyst assemblages and benthic foraminiferal isotopes reliably mirror the complex fjord hydrology and can be used as proxies of Holocene climatic variability.
- Other research product . 2019Open Access EnglishAuthors:Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;Project: EC | PHOXY (278364)
Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm Archipelago. Bottom water concentrations of oxygen and P are inversely correlated. This is attributed to the seasonal release of P from iron (Fe)-oxide-bound P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water, linked to prior deposition of organic-rich sediments in a low oxygen setting (legacy of hypoxia), hinders the formation of a larger Fe-oxide-bound P pool in winter. Burial rates of P are high at all sites (0.03–0.3 mol m−2 y−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (~ 30 to 50 μmol g−1). Organic P accounts for 30–50 % of reactive P burial. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink-switching of organic or Fe-oxide bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1), efficiently removing N as N2. Denitrification rates decrease seaward following the decline in bottom water nitrate and sediment organic carbon. Our results explain how sediments in this eutrophic coastal system can efficiently remove land-derived P and N, regardless of whether the bottom waters are oxic or frequently hypoxic. Hence, management strategies involving artificial reoxygenation are not expected to be successful in removing P and N, emphasizing a need for a focus on nutrient load reductions.
- Other research product . 2018Open Access EnglishAuthors:Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;Project: EC | EPOCA (211384)
Recent observations and modelling studies suggest that biogeochemical changes can mask atmospheric CO2-induced pH decreases. Data collected by the Dutch monitoring authorities in different coastal systems (North Sea, Wadden Sea, Ems-Dollard, Eastern Scheldt and Scheldt estuary) since 1975 provide an excellent opportunity to test whether this is the case in the Dutch coastal zone. The time-series were analysed using Multi-Resolution Analysis (MRA) which resulted in the identification of system-dependent patterns on both seasonal and intra-annual time scales. The observed rates of pH change greatly exceed those expected from enhanced CO2 uptake, thus suggesting that other biogeochemical processes, possibly related to changes in nutrient loading, can play a dominant role in ocean acidification.
- Other research product . 2018Open Access EnglishAuthors:Seibt, U.; Kesselmeier, J.; Sandoval-Soto, L.; Kuhn, U.; Berry, J. A.;Seibt, U.; Kesselmeier, J.; Sandoval-Soto, L.; Kuhn, U.; Berry, J. A.;Project: EC | COSIRIS (202835)
Carbonyl sulfide (COS) is an atmospheric trace gas that holds great promise for studies of terrestrial carbon and water exchange. In leaves, COS follows the same pathway as CO2 during photosynthesis. Both gases are taken up in enzyme reactions, making COS and CO2 uptake closely coupled at the leaf scale. The biological background of leaf COS uptake is a hydrolysis reaction catalyzed by the enzyme carbonic anhydrase. Based on this, we derive and test a simple kinetic model of leaf COS uptake, and relate COS to CO2 and water fluxes at the leaf scale. The equation was found to predict realistic leaf COS fluxes compared to observations from field and laboratory chambers. We confirm that COS uptake at the leaf level is directly linked to stomatal conductance. As a consequence, the ratio of normalized uptake rates (uptake rates divided by ambient mole fraction) for leaf COS and CO2 fluxes can provide an estimate of Ci/Ca, the ratio of intercellular to atmospheric CO2, an important plant gas exchange parameter that cannot be measured directly. The majority of published normalized COS to CO2 uptake ratios for leaf studies on a variety of species fall in the range of 1.5 to 4, corresponding to Ci/Ca ratios of 0.5 to 0.8. In addition, we utilize the coupling of Ci/Ca and photosynthetic 13C discrimination to derive an estimate of 2.8±0.3 for the global mean normalized uptake ratio. This corresponds to a global vegetation sink of COS in the order of 900±100 Gg S yr−1. COS can now be implemented in the same model framework as CO2 and water vapour. Atmospheric COS measurements can then provide independent constraints on CO2 and water cycles at ecosystem, regional and global scales.
- Other research product . 2021Open Access EnglishAuthors:Bressac, Matthieu; Wagener, Thibaut; Leblond, Nathalie; Tovar-Sánchez, Antonio; Ridame, Céline; Taillandier, Vincent; Albani, Samuel; Guasco, Sophie; Dufour, Aurélie; Jacquet, Stéphanie H. M.; +3 moreBressac, Matthieu; Wagener, Thibaut; Leblond, Nathalie; Tovar-Sánchez, Antonio; Ridame, Céline; Taillandier, Vincent; Albani, Samuel; Guasco, Sophie; Dufour, Aurélie; Jacquet, Stéphanie H. M.; Dulac, François; Desboeufs, Karine; Guieu, Cécile;Project: EC | IRON-IC (626734)
Mineral dust deposition is an important supply mechanism for trace elements in the low-latitude ocean. Our understanding of the controls of such inputs has been mostly built on laboratory and surface ocean studies. The lack of direct observations and the tendency to focus on near-surface waters prevent a comprehensive evaluation of the role of dust in oceanic biogeochemical cycles. In the frame of the PEACETIME project (ProcEss studies at the Air-sEa Interface after dust deposition in the MEditerranean sea), the responses of the aluminum (Al) and iron (Fe) cycles to two dust wet deposition events over the central and western Mediterranean Sea were investigated at a timescale of hours to days using a comprehensive dataset gathering dissolved and suspended particulate concentrations, along with sinking fluxes. Dissolved Al (dAl) removal was dominant over dAl released from dust. The Fe/Al ratio of suspended and sinking particles revealed that biogenic particles, and in particular diatoms, were key in accumulating and exporting Al relative to Fe. By combining these observations with published Al/Si ratios of diatoms, we show that adsorption onto biogenic particles, rather than active uptake, represents the main sink for dAl in Mediterranean waters. In contrast, systematic dissolved Fe (dFe) accumulation occurred in subsurface waters (∼ 100–1000 m), while dFe input from dust was only transient in the surface mixed layer. The rapid transfer of dust to depth, the Fe-binding ligand pool in excess to dFe in subsurface (while nearly saturated in surface), and low scavenging rates in this particle-poor depth horizon are all important drivers of this subsurface dFe enrichment. At the annual scale, this previously overlooked mechanism may represent an additional pathway of dFe supply for the surface ocean through diapycnal diffusion and vertical mixing. However, low subsurface dFe concentrations observed at the basin scale (< 0.5 nmol kg−1) cause us to question the residence time for this dust-derived subsurface reservoir and hence its role as a supply mechanism for the surface ocean, stressing the need for further studies. Finally, these contrasting responses indicate that dAl is a poor tracer of dFe input in the Mediterranean Sea.
311 Research products, page 1 of 32
Loading
- Other research product . 2018Open Access EnglishAuthors:Steinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; +2 moreSteinacher, M.; Joos, F.; Frölicher, T. L.; Bopp, L.; Cadule, P.; Cocco, V.; Doney, S. C.; Gehlen, M.; Lindsay, K.; Moore, J. K.; Schneider, B.; Segschneider, J.;Project: EC | EPOCA (211384), EC | MEECE (212085)
Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.
- Other research product . 2018Open Access EnglishAuthors:Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.;Project: EC | HERMIONE (226354)
The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560–760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560–2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock which would offer suitable habitat for benthic organisms. By comparing the locally restricted video observations and the broad-scale monitoring of a much larger and deeper seafloor area as derived by hydroacoustic seabed classification, it becomes obvious that habitat information obtained by in situ sampling may provide a rather scattered pattern about the entire seamount ecosystem. Solely with a combination of both methods, a satisfactory approach to describe the diverse characteristics of a seamount ecosystem can be derived which is in turn indispensable for future scientific monitoring campaigns as well as management and conservation purposes.
- Other research product . 2018Open Access EnglishAuthors:Dalmonech, D.; Foley, A. M.; Anav, A.; Friedlingstein, P.; Friend, A. D.; Kidston, M.; Willeit, M.; Zaehle, S.;Dalmonech, D.; Foley, A. M.; Anav, A.; Friedlingstein, P.; Friend, A. D.; Kidston, M.; Willeit, M.; Zaehle, S.;Project: EC | GREENCYCLESII (238366)
Atmospheric CO2 and climate projections for the next century vary widely across current Earth system models (ESMs), owing to different representations of the interactions between the marine and land carbon cycle on the one hand, and climate change and increasing atmospheric CO2 on the other hand. Several efforts have been made in the last years to analyse these differences in detail in order to suggest model improvements. Here we review these efforts and analyse their successes, but also the associated uncertainties that hamper the best use of the available observations to constrain and improve the ESMs models. The aim of this paper is to highlight challenges in improving the ESMs that result from: (i) uncertainty about important processes in terrestrial and marine ecosystems and their response to climate change and increasing atmospheric CO2; (ii) structural and parameter-related uncertainties in current land and marine models; (iii) uncertainties related to observations and the formulations of model performance metrics. We discuss the implications of these uncertainties for reducing the spread in future projections of ESMs and suggest future directions of work to overcome these uncertainties.
- Other research product . 2019Open Access EnglishAuthors:Geerlings, Nicole M. J.; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Middelburg, Jack J.; Meysman, Filip J. R.;Geerlings, Nicole M. J.; Zetsche, Eva-Maria; Hidalgo-Martinez, Silvia; Middelburg, Jack J.; Meysman, Filip J. R.;Project: NWO | The impact of cable bacte... (12983), EC | SEDBIOGEOCHEM2.0 (306933), EC | BIPHA (660481)
Cable bacteria are multicellular, filamentous microorganisms that are capable of transporting electrons over centimeter-scale distances. Although recently discovered, these bacteria appear to be widely present in the seafloor, and when active they exert a strong imprint on the local geochemistry. In particular, their electrogenic metabolism induces unusually strong pH excursions in aquatic sediments, which induces considerable mineral dissolution, and subsequent mineral reprecipitation. However, at present, it is unknown whether and how cable bacteria play an active or direct role in the mineral reprecipitation process. To this end we present an explorative study of the formation of sedimentary minerals in and near filamentous cable bacteria using a combined approach of electron microscopy and spectroscopic techniques. Our observations reveal the formation of polyphosphate granules within the cells and two different types of biomineral formation directly associated with multicellular filaments of these cable bacteria: (i) the attachment and incorporation of clay particles in a coating surrounding the bacteria and (ii) encrustation of the cell envelope by iron minerals. These findings suggest a complex interaction between cable bacteria and the surrounding sediment matrix, and a substantial imprint of the electrogenic metabolism on mineral diagenesis and sedimentary biogeochemical cycling. In particular, the encrustation process leaves many open questions for further research. For example, we hypothesize that the complete encrustation of filaments might create a diffusion barrier and negatively impact the metabolism of the cable bacteria.
- Other research product . 2018Open Access EnglishAuthors:Steinacher, M.; Joos, F.; Frölicher, T. L.; Plattner, G.-K.; Doney, S. C.;Steinacher, M.; Joos, F.; Frölicher, T. L.; Plattner, G.-K.; Doney, S. C.;Project: EC | EPOCA (211384)
Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.
- Other research product . 2018Open Access EnglishAuthors:Milzer, G.; Giraudeau, J.; Faust, J.; Knies, J.; Eynaud, F.; Rühlemann, C.;Milzer, G.; Giraudeau, J.; Faust, J.; Knies, J.; Eynaud, F.; Rühlemann, C.;Project: EC | CASE (238111)
Instrumental records from the Norwegian Sea and the Trondheimsfjord show evidence that changes of bottom water temperature and salinity in the fjord are linked to the salinity and temperature variability of the North Atlantic Current (NAC). Changes in primary productivity and salinity in the surface and intermediate water masses in the Trondheimsfjord as well as the fjord sedimentary budget are mainly driven by changes in riverine input. In this study we use 59 surface sediment samples that are evenly distributed in the fjord to examine whether dinocyst assemblages and stable isotope ratios of benthic foraminifera reflect the present-day hydrology and can be used as palaeoceanographic proxies. In general, modern benthic δ18O and δ13C values decrease from the fjord entrance towards the fjord head with lowest values close to river inlets. This is essentially explained by gradients in the amounts of fresh water and terrigenous organic matter delivered from the hinterland. The distribution of benthic δ13C ratios across the fjord is controlled by the origin (terrigenous vs. marine) of organic matter, local topography-induced variability in organic matter flux at the water–sediment interface, and organic matter degradation. The dinocyst assemblages display the variations in hydrography with respect to the prevailing currents, the topography, and the freshwater and nutrient supply from rivers. The strength and depth of the pycnocline in the fjord strongly vary seasonally and thereby affect water mass characteristics as well as nutrient availability, temporally creating local conditions that explain the observed species distribution. Our results prove that dinocyst assemblages and benthic foraminiferal isotopes reliably mirror the complex fjord hydrology and can be used as proxies of Holocene climatic variability.
- Other research product . 2019Open Access EnglishAuthors:Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;Helmond, Niels A. G. M.; Robertson, Elizabeth K.; Conley, Daniel J.; Hermans, Martijn; Humborg, Christoph; Kubeneck, L. Joëlle; Lenstra, Wytze K.; Slomp, Caroline P.;Project: EC | PHOXY (278364)
Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm Archipelago. Bottom water concentrations of oxygen and P are inversely correlated. This is attributed to the seasonal release of P from iron (Fe)-oxide-bound P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water, linked to prior deposition of organic-rich sediments in a low oxygen setting (legacy of hypoxia), hinders the formation of a larger Fe-oxide-bound P pool in winter. Burial rates of P are high at all sites (0.03–0.3 mol m−2 y−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (~ 30 to 50 μmol g−1). Organic P accounts for 30–50 % of reactive P burial. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink-switching of organic or Fe-oxide bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1), efficiently removing N as N2. Denitrification rates decrease seaward following the decline in bottom water nitrate and sediment organic carbon. Our results explain how sediments in this eutrophic coastal system can efficiently remove land-derived P and N, regardless of whether the bottom waters are oxic or frequently hypoxic. Hence, management strategies involving artificial reoxygenation are not expected to be successful in removing P and N, emphasizing a need for a focus on nutrient load reductions.
- Other research product . 2018Open Access EnglishAuthors:Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;Provoost, P.; Heuven, S.; Soetaert, K.; Laane, R. W. P. M.; Middelburg, J. J.;Project: EC | EPOCA (211384)
Recent observations and modelling studies suggest that biogeochemical changes can mask atmospheric CO2-induced pH decreases. Data collected by the Dutch monitoring authorities in different coastal systems (North Sea, Wadden Sea, Ems-Dollard, Eastern Scheldt and Scheldt estuary) since 1975 provide an excellent opportunity to test whether this is the case in the Dutch coastal zone. The time-series were analysed using Multi-Resolution Analysis (MRA) which resulted in the identification of system-dependent patterns on both seasonal and intra-annual time scales. The observed rates of pH change greatly exceed those expected from enhanced CO2 uptake, thus suggesting that other biogeochemical processes, possibly related to changes in nutrient loading, can play a dominant role in ocean acidification.
- Other research product . 2018Open Access EnglishAuthors:Seibt, U.; Kesselmeier, J.; Sandoval-Soto, L.; Kuhn, U.; Berry, J. A.;Seibt, U.; Kesselmeier, J.; Sandoval-Soto, L.; Kuhn, U.; Berry, J. A.;Project: EC | COSIRIS (202835)
Carbonyl sulfide (COS) is an atmospheric trace gas that holds great promise for studies of terrestrial carbon and water exchange. In leaves, COS follows the same pathway as CO2 during photosynthesis. Both gases are taken up in enzyme reactions, making COS and CO2 uptake closely coupled at the leaf scale. The biological background of leaf COS uptake is a hydrolysis reaction catalyzed by the enzyme carbonic anhydrase. Based on this, we derive and test a simple kinetic model of leaf COS uptake, and relate COS to CO2 and water fluxes at the leaf scale. The equation was found to predict realistic leaf COS fluxes compared to observations from field and laboratory chambers. We confirm that COS uptake at the leaf level is directly linked to stomatal conductance. As a consequence, the ratio of normalized uptake rates (uptake rates divided by ambient mole fraction) for leaf COS and CO2 fluxes can provide an estimate of Ci/Ca, the ratio of intercellular to atmospheric CO2, an important plant gas exchange parameter that cannot be measured directly. The majority of published normalized COS to CO2 uptake ratios for leaf studies on a variety of species fall in the range of 1.5 to 4, corresponding to Ci/Ca ratios of 0.5 to 0.8. In addition, we utilize the coupling of Ci/Ca and photosynthetic 13C discrimination to derive an estimate of 2.8±0.3 for the global mean normalized uptake ratio. This corresponds to a global vegetation sink of COS in the order of 900±100 Gg S yr−1. COS can now be implemented in the same model framework as CO2 and water vapour. Atmospheric COS measurements can then provide independent constraints on CO2 and water cycles at ecosystem, regional and global scales.
- Other research product . 2021Open Access EnglishAuthors:Bressac, Matthieu; Wagener, Thibaut; Leblond, Nathalie; Tovar-Sánchez, Antonio; Ridame, Céline; Taillandier, Vincent; Albani, Samuel; Guasco, Sophie; Dufour, Aurélie; Jacquet, Stéphanie H. M.; +3 moreBressac, Matthieu; Wagener, Thibaut; Leblond, Nathalie; Tovar-Sánchez, Antonio; Ridame, Céline; Taillandier, Vincent; Albani, Samuel; Guasco, Sophie; Dufour, Aurélie; Jacquet, Stéphanie H. M.; Dulac, François; Desboeufs, Karine; Guieu, Cécile;Project: EC | IRON-IC (626734)
Mineral dust deposition is an important supply mechanism for trace elements in the low-latitude ocean. Our understanding of the controls of such inputs has been mostly built on laboratory and surface ocean studies. The lack of direct observations and the tendency to focus on near-surface waters prevent a comprehensive evaluation of the role of dust in oceanic biogeochemical cycles. In the frame of the PEACETIME project (ProcEss studies at the Air-sEa Interface after dust deposition in the MEditerranean sea), the responses of the aluminum (Al) and iron (Fe) cycles to two dust wet deposition events over the central and western Mediterranean Sea were investigated at a timescale of hours to days using a comprehensive dataset gathering dissolved and suspended particulate concentrations, along with sinking fluxes. Dissolved Al (dAl) removal was dominant over dAl released from dust. The Fe/Al ratio of suspended and sinking particles revealed that biogenic particles, and in particular diatoms, were key in accumulating and exporting Al relative to Fe. By combining these observations with published Al/Si ratios of diatoms, we show that adsorption onto biogenic particles, rather than active uptake, represents the main sink for dAl in Mediterranean waters. In contrast, systematic dissolved Fe (dFe) accumulation occurred in subsurface waters (∼ 100–1000 m), while dFe input from dust was only transient in the surface mixed layer. The rapid transfer of dust to depth, the Fe-binding ligand pool in excess to dFe in subsurface (while nearly saturated in surface), and low scavenging rates in this particle-poor depth horizon are all important drivers of this subsurface dFe enrichment. At the annual scale, this previously overlooked mechanism may represent an additional pathway of dFe supply for the surface ocean through diapycnal diffusion and vertical mixing. However, low subsurface dFe concentrations observed at the basin scale (< 0.5 nmol kg−1) cause us to question the residence time for this dust-derived subsurface reservoir and hence its role as a supply mechanism for the surface ocean, stressing the need for further studies. Finally, these contrasting responses indicate that dAl is a poor tracer of dFe input in the Mediterranean Sea.