Filters
Clear AllLoading
- Other research products
- French National Research Agency (ANR)
- European Commission
- SeaO2 - Past changes in Southern Ocean overturning circulation - implications for the partitioning of carbon and oxygen between the ocean and the atmosphere
- Quantifying changes in the rate of North Atlantic Deep and Intermediate Water formation associated with abrupt climate changes during the late Quaternary
- CH
- EU
- Other research products
- French National Research Agency (ANR)
- European Commission
- SeaO2 - Past changes in Southern Ocean overturning circulation - implications for the partitioning of carbon and oxygen between the ocean and the atmosphere
- Quantifying changes in the rate of North Atlantic Deep and Intermediate Water formation associated with abrupt climate changes during the late Quaternary
- CH
- EU
apps Other research productkeyboard_double_arrow_right Collection 2016 EnglishPANGAEA ANR | RETRO, SNSF | SeaO2 - Past changes in S..., SNSF | Quantifying changes in th...Burckel, Pierre; Waelbroeck, Claire; Luo, Yiming; Roche, Didier M; Pichat, Sylvain; Jaccard, Samuel L; Gherardi, Jeanne-Marie; Govin, Aline; Lippold, Jörg; Thil, François;We reconstruct the geometry and strength of the Atlantic Meridional Overturning Circulation during Heinrich Stadial 2 and three Greenland interstadials of the 20-50 ka period based on the comparison of new and published sedimentary 231Pa/230Th data with simulated sedimentary 231Pa/230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present day North Atlantic Deep Water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin, and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic Bottom Water (AABW). Our results further show that during Heinrich Stadial 2, the deep Atlantic was probably directly affected by a southern-sourced water mass below 2500 m depth, while a slow southward flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::dba97786c6926bbcd742975fde6e217e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::dba97786c6926bbcd742975fde6e217e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English SNSF | SeaO2 - Past changes in S..., ANR | RETRO, SNSF | Quantifying changes in th...Burckel Pierre; Waelbroeck Claire; Luo Yiming; Roche Didier M; Pichat Sylvain; Jaccard Samuel L; Gherardi Jeanne-Marie; Govin Aline; Lippold Jörg; Thil François;We reconstruct the geometry and strength of the Atlantic meridional overturning circulation during the Heinrich stadial 2 and three Greenland interstadials of the 20–50 ka period based on the comparison of new and published sedimentary 231Pa / 230Th data with simulated sedimentary 231Pa / 230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present-day North Atlantic deep water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic bottom water (AABW). Our results further show that during Heinrich stadial 2, the deep Atlantic was probably directly affected by a southern-sourced water mass below 2500 m depth, while a slow, southward-flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::1c4f7289e0bfa3a8ad4e50202617475f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::1c4f7289e0bfa3a8ad4e50202617475f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research productkeyboard_double_arrow_right Collection 2016 EnglishPANGAEA ANR | RETRO, SNSF | SeaO2 - Past changes in S..., SNSF | Quantifying changes in th...Burckel, Pierre; Waelbroeck, Claire; Luo, Yiming; Roche, Didier M; Pichat, Sylvain; Jaccard, Samuel L; Gherardi, Jeanne-Marie; Govin, Aline; Lippold, Jörg; Thil, François;We reconstruct the geometry and strength of the Atlantic Meridional Overturning Circulation during Heinrich Stadial 2 and three Greenland interstadials of the 20-50 ka period based on the comparison of new and published sedimentary 231Pa/230Th data with simulated sedimentary 231Pa/230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present day North Atlantic Deep Water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin, and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic Bottom Water (AABW). Our results further show that during Heinrich Stadial 2, the deep Atlantic was probably directly affected by a southern-sourced water mass below 2500 m depth, while a slow southward flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::dba97786c6926bbcd742975fde6e217e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::dba97786c6926bbcd742975fde6e217e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2018 English SNSF | SeaO2 - Past changes in S..., ANR | RETRO, SNSF | Quantifying changes in th...Burckel Pierre; Waelbroeck Claire; Luo Yiming; Roche Didier M; Pichat Sylvain; Jaccard Samuel L; Gherardi Jeanne-Marie; Govin Aline; Lippold Jörg; Thil François;We reconstruct the geometry and strength of the Atlantic meridional overturning circulation during the Heinrich stadial 2 and three Greenland interstadials of the 20–50 ka period based on the comparison of new and published sedimentary 231Pa / 230Th data with simulated sedimentary 231Pa / 230Th. We show that the deep Atlantic circulation during these interstadials was very different from that of the Holocene. Northern-sourced waters likely circulated above 2500 m depth, with a flow rate lower than that of the present-day North Atlantic deep water (NADW). Southern-sourced deep waters most probably flowed northwards below 4000 m depth into the North Atlantic basin and then southwards as a return flow between 2500 and 4000 m depth. The flow rate of this southern-sourced deep water was likely larger than that of the modern Antarctic bottom water (AABW). Our results further show that during Heinrich stadial 2, the deep Atlantic was probably directly affected by a southern-sourced water mass below 2500 m depth, while a slow, southward-flowing water mass originating from the North Atlantic likely influenced depths between 1500 and 2500 m down to the equator.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::1c4f7289e0bfa3a8ad4e50202617475f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::1c4f7289e0bfa3a8ad4e50202617475f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu