Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
16 Research products, page 1 of 2

  • Other research products
  • US
  • Atmospheric Chemistry and Physics (ACP)

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Fanourgakis, George S.; Kanakidou, Maria; Nenes, Athanasios; Bauer, Susanne E.; Bergman, Tommi; Carslaw, Ken S.; Grini, Alf; Hamilton, Douglas S.; Johnson, Jill S.; Karydis, Vlassis A.; +29 more
    Project: EC | ACTRIS-2 (654109), EC | PyroTRACH (726165), EC | BACCHUS (603445), EC | RECAP (724602), NSF | Development, Validation, ... (1550816), EC | CRESCENDO (641816)

    A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011–2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of −24 % and −35 % for particles with dry diameters >50 and >120 nm, as well as −36 % and −34 % for CCN at supersaturations of 0.2 % and 1.0 %, respectively. However, they seem to behave differently for particles activating at very low supersaturations (<0.1 %) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2 % (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120 nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40 % during winter and 20 % in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB −13 % and −22 % for updraft velocities 0.3 and 0.6 m s−1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (∂Nd/∂Na) and to updraft velocity (∂Nd/∂w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities ∂Nd/∂Na and ∂Nd/∂w; models may be predisposed to be too “aerosol sensitive” or “aerosol insensitive” in aerosol–cloud–climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain inter-model biases on the aerosol indirect effect.

  • Open Access English
    Authors: 
    Gryspeerdt, Edward; Goren, Tom; Sourdeval, Odran; Quaas, Johannes; Mülmenstädt, Johannes; Dipu, Sudhakar; Unglaub, Claudia; Gettelman, Andrew; Christensen, Matthew;
    Project: EC | QUAERERE (306284), EC | MSCCC (703880)

    The impact of aerosols on cloud properties is one of the largest uncertainties in the anthropogenic radiative forcing of the climate. Significant progress has been made in constraining this forcing using observations, but uncertainty remains, particularly in the magnitude of cloud rapid adjustments to aerosol perturbations. Cloud liquid water path (LWP) is the leading control on liquid-cloud albedo, making it important to observationally constrain the aerosol impact on LWP. Previous modelling and observational studies have shown that multiple processes play a role in determining the LWP response to aerosol perturbations, but that the aerosol effect can be difficult to isolate. Following previous studies using mediating variables, this work investigates use of the relationship between cloud droplet number concentration (Nd) and LWP for constraining the role of aerosols. Using joint-probability histograms to account for the non-linear relationship, this work finds a relationship that is broadly consistent with previous studies. There is significant geographical variation in the relationship, partly due to role of meteorological factors (particularly relative humidity). The Nd–LWP relationship is negative in the majority of regions, suggesting that aerosol-induced LWP reductions could offset a significant fraction of the instantaneous radiative forcing from aerosol–cloud interactions (RFaci). However, variations in the Nd–LWP relationship in response to volcanic and shipping aerosol perturbations indicate that the Nd–LWP relationship overestimates the causal Nd impact on LWP due to the role of confounding factors. The weaker LWP reduction implied by these “natural experiments” means that this work provides an upper bound to the radiative forcing from aerosol-induced changes in the LWP.

  • Open Access English
    Authors: 
    Stolzenburg, Dominik; Simon, Mario; Ranjithkumar, Ananth; Kürten, Andreas; Lehtipalo, Katrianne; Gordon, Hamish; Ehrhart, Sebastian; Finkenzeller, Henning; Pichelstorfer, Lukas; Nieminen, Tuomo; +68 more
    Project: EC | NANODYNAMITE (616075), FWF | Chemical composition of a... (P 27295), SNSF | CLOUD Infrastructure proj... (172622), AKA | From Autoxidation to Auto... (299574), NSF | Collaborative Research: C... (1801280), NSF | Collaborative Research: C... (1801329), AKA | Oxidised organic vapours ... (310682), EC | CLOUD-MOTION (764991), SNSF | CLOUD (159851), EC | COFUND-FP-CERN-2014 (665779),...

    In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (<10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van der Waals forces between the vapour molecules and particles and disentangle it from charge–dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %.

  • Open Access English
    Authors: 
    Kanji, Zamin A.; Sullivan, Ryan C.; Niemand, Monika; DeMott, Paul J.; Prenni, Anthony J.; Chou, Cédric; Saathoff, Harald; Möhler, Ottmar;
    Project: NSF | Ice Nuclei and Ice Initia... (0611936), EC | EUROCHAMP-2 (228335), NSF | Collaborative Research: L... (0841602)

    Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233 K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3 µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66 % prediction bands) region of the average fit to the data, which captures 75 % of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60 nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60 nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.

  • Open Access English
    Authors: 
    Mülmenstädt, Johannes; Gryspeerdt, Edward; Salzmann, Marc; Ma, Po-Lun; Dipu, Sudhakar; Quaas, Johannes;
    Project: EC | QUAERERE (306284)

    Using the method of offline radiative transfer modeling within the partial radiative perturbation (PRP) approach, the effective radiative forcing by aerosol–cloud interactions (ERFaci) in the ECHAM–HAMMOZ aerosol climate model is decomposed into a radiative forcing by anthropogenic cloud droplet number change and adjustments of the liquid water path and cloud fraction. The simulated radiative forcing by anthropogenic cloud droplet number change and liquid water path adjustment are of approximately equal magnitude at −0.52 and −0.53 W m−2, respectively, while the cloud-fraction adjustment is somewhat weaker at −0.31 W m−2 (constituting 38 %, 39 %, and 23 % of the total ERFaci, respectively); geographically, all three ERFaci components in the simulation peak over China, the subtropical eastern ocean boundaries, the northern Atlantic and Pacific oceans, Europe, and eastern North America (in order of prominence). Spatial correlations indicate that the temporal-mean liquid water path adjustment is proportional to the temporal-mean radiative forcing, while the relationship between cloud-fraction adjustment and radiative forcing is less direct. While the estimate of warm-cloud ERFaci is relatively insensitive to the treatment of ice and mixed-phase cloud overlying warm cloud, there are indications that more restrictive treatments of ice in the column result in a low bias in the estimated magnitude of the liquid water path adjustment and a high bias in the estimated magnitude of the droplet number forcing. Since the present work is the first PRP decomposition of the aerosol effective radiative forcing into radiative forcing and rapid cloud adjustments, idealized experiments are conducted to provide evidence that the PRP results are accurate. The experiments show that using low-frequency (daily or monthly) time-averaged model output of the cloud property fields underestimates the ERF, but 3-hourly mean output is sufficiently frequent.

  • Open Access English
    Authors: 
    Patoulias, David; Fountoukis, Christos; Riipinen, Ilona; Asmi, Ari; Kulmala, Markku; Pandis, Spyros N.;
    Project: EC | ATMOPACS (267099)

    PMCAMx-UF, a three-dimensional chemical transport model focusing on the simulation of the ultrafine particle size distribution and composition has been extended with the addition of the volatility basis set (VBS) approach for the simulation of organic aerosol (OA). The model was applied in Europe to quantify the effect of secondary semi-volatile organic vapors on particle number concentrations. The model predictions were evaluated against field observations collected during the PEGASOS 2012 campaign. The measurements included both ground and airborne measurements, from stations across Europe and a zeppelin measuring above Po Valley. The ground level concentrations of particles with a diameter larger than 100 nm (N100) were reproduced with a daily normalized mean error of 40 % and a daily normalized mean bias of −20 %. PMCAMx-UF tended to overestimate the concentration of particles with a diameter larger than 10 nm (N10) with a daily normalized mean bias of 75 %. The model was able to reproduce, within a factor of 2, 85 % of the N10 and 75 % of the N100 zeppelin measurements above ground. The condensation of organics led to an increase (50 %–120 %) in the N100 concentration mainly in central and northern Europe, while the N10 concentration decreased by 10 %–30 %. Including the VBS in PMCAMx-UF improved its ability to simulate aerosol number concentration compared to simulations neglecting organic condensation on ultrafine particles.

  • Open Access English
    Authors: 
    Brilke, Sophia; Fölker, Nikolaus; Müller, Thomas; Kandler, Konrad; Gong, Xianda; Peischl, Jeff; Weinzierl, Bernadett; Winkler, Paul M.;
    Project: EC | A-LIFE (640458), EC | NANODYNAMITE (616075)

    Atmospheric particle size distributions were measured in Paphos, Cyprus, during the A-LIFE (absorbing aerosol layers in a changing climate: ageing, lifetime and dynamics) field experiment from 3 to 30 April 2017. The newly developed differential mobility analyser train (DMA-train) was deployed for the first time in an atmospheric environment for the direct measurement of the nucleation mode size range between 1.8 and 10 nm diameter. The DMA-train set-up consists of seven size channels, of which five are set to fixed particle mobility diameters and two additional diameters are obtained by alternating voltage settings in one DMA every 10 s. In combination with a conventional mobility particle size spectrometer (MPSS) and an aerodynamic particle sizer (APS) the complete atmospheric aerosol size distribution from 1.8 nm to 10 µm was covered. The focus of the A-LIFE study was to characterize new particle formation (NPF) in the eastern Mediterranean region at a measurement site with strong local pollution sources. The nearby Paphos airport was found to be a large emission source for nucleation mode particles, and we analysed the size distribution of the airport emission plumes at approximately 500 m from the main runway. The analysis yielded nine NPF events in 27 measurement days from the combined analysis of the DMA-train, MPSS and trace gas monitors. Growth rate calculations were performed, and a size dependency of the initial growth rate (<10 nm) was observed for one event case. Fast changes of the sub-10 nm size distribution on a timescale of a few minutes were captured by the DMA-train measurement during early particle growth and are discussed in a second event case. In two cases, particle formation and growth were detected in the nucleation mode size range which did not exceed the 10 nm threshold. This finding implies that NPF likely occurs more frequently than estimated from studies where the lower nanometre size regime is not covered by the size distribution measurements.

  • Open Access English
    Authors: 
    Brege, Matthew; Paglione, Marco; Gilardoni, Stefania; Decesari, Stefano; Facchini, Maria Cristina; Mazzoleni, Lynn R.;
    Project: EC | BACCHUS (603445)

    To study the influence of regional biomass burning emissions and secondary processes, ambient samples of fog and aerosol were collected in the Po Valley (Italy) during the 2013 Supersito field campaign. After the extent of fresh vs. aged biomass burning influence was estimated from proton nuclear magnetic resonance (1H NMR) and high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), two samples of fog water and two samples of PM1 aerosol were selected for ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis. Molecular compositions indicated that the water-soluble organic matter was largely non-polymeric without clearly repeating units. The selected samples had an atypically large frequency of molecular formulas containing nitrogen and sulfur (not evident in the NMR composition) attributed to multifunctional organonitrates and organosulfates. Higher numbers of organonitrates were observed in aerosol, and higher numbers of organosulfates were observed in fog water. Consistent with the observation of an enhanced aromatic proton signature in the 1H-NMR analysis, the average molecular formula double-bond equivalents and carbon numbers were higher in the fresh biomass-burning-influenced samples. The average O : C and H : C values from FT-ICR MS were higher in the samples with an aged influence (O : C  =  0.50–0.58, and H : C  =  1.31–1.37) compared to those with fresh influence (O : C  =  0.43–0.48, and H : C  =  1.13–1.30). The aged fog had a large set of unique highly oxygenated CHO fragments in the HR-ToF-AMS, which reflects an enrichment of carboxylic acids and other compounds carrying acyl groups, highlighted by the NMR analysis. Fog compositions were more oxidized and SOA (secondary organic aerosol)-like than aerosols as indicated by their NMR measured acyl-to-alkoxyl ratios and the observed molecular formula similarity between the aged aerosol and fresh fog, implying that fog nuclei must be somewhat aged. Overall, functionalization with nitrate and sulfate moieties, in addition to aqueous oxidation, triggers an increase in the molecular complexity in this environment, which is apparent in the FT-ICR MS results. This study demonstrates the significance of the aqueous phase in transforming the molecular chemistry of atmospheric organic matter and contributing to secondary organic aerosol.

  • Open Access English
    Authors: 
    Rowlinson, Matthew J.; Rap, Alexandru; Hamilton, Douglas S.; Pope, Richard J.; Hantson, Stijn; Arnold, Steve R.; Kaplan, Jed O.; Arneth, Almut; Chipperfield, Martyn P.; Forster, Piers M.; +1 more
    Project: EC | BACCHUS (603445), EC | CONSTRAIN (820829), UKRI | NERC Science @ Leeds and ... (NE/L002574/1), EC | LUC4C (603542)

    Tropospheric ozone concentrations are sensitive to natural emissions of precursor compounds. In contrast to existing assumptions, recent evidence indicates that terrestrial vegetation emissions in the pre-industrial era were larger than in the present day. We use a chemical transport model and a radiative transfer model to show that revised inventories of pre-industrial fire and biogenic emissions lead to an increase in simulated pre-industrial ozone concentrations, decreasing the estimated pre-industrial to present-day tropospheric ozone radiative forcing by up to 34 % (0.38 to 0.25 W m−2). We find that this change is sensitive to employing biomass burning and biogenic emissions inventories based on matching vegetation patterns, as the co-location of emission sources enhances the effect on ozone formation. Our forcing estimates are at the lower end of existing uncertainty range estimates (0.2–0.6 W m−2), without accounting for other sources of uncertainty. Thus, future work should focus on reassessing the uncertainty range of tropospheric ozone radiative forcing.

  • Open Access English
    Authors: 
    Andersson, August; Kirillova, Elena N.; Decesari, Stefano; DeWitt, Langley; Gasore, Jimmy; Potter, Katherine E.; Prinn, Ronald G.; Rupakheti, Maheswar; Dieu Ndikubwimana, Jean; Nkusi, Julius; +1 more
    Project: EC | HIMALAYABROWNCARBON (623386)

    Sub-Saharan Africa (SSA) is a global hot spot for aerosol emissions, which affect the regional climate and air quality. In this paper, we use ground-based observations to address the large uncertainties in the source-resolved emission estimation of carbonaceous aerosols. Ambient fine fraction aerosol was collected on filters at the high-altitude (2590 m a.s.l.) Rwanda Climate Observatory (RCO), a SSA background site, during the dry and wet seasons in 2014 and 2015. The concentrations of both the carbonaceous and inorganic ion components show a strong seasonal cycle, with highly elevated concentrations during the dry season. Source marker ratios, including carbon isotopes, show that the wet and dry seasons have distinct aerosol compositions. The dry season is characterized by elevated amounts of biomass burning products, which approach ∼95 % for carbonaceous aerosols. An isotopic mass-balance estimate shows that the amount of the carbonaceous aerosol stemming from savanna fires may increase from 0.2 µg m−3 in the wet season up to 10 µg m−3 during the dry season. Based on these results, we quantitatively show that savanna fire is the key modulator of the seasonal aerosol composition variability at the RCO.

Send a message
How can we help?
We usually respond in a few hours.