Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • 2020-2024
  • Open Access
  • Restricted
  • Publications
  • Research software
  • AU
  • Chinese
  • Digital Humanities and Cultural Her...

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wang, Chunxin; Fan, Anchuan; Li, Bo; Yan, Zihan; +1 Authors

    BackgroundLuminescence dating technology has made significant advancements in determining the chronology of archaeological materials subjected to low firing temperatures. However, the luminescence dating of archaeological materials subjected to high firing temperatures remains challenging.PurposeThis study aims to explore the luminescence emission spectrum characteristics and luminescence properties of high-firing temperature quartz to verify the feasibility of thermoluminescence (TL) signals from different bands in luminescence dating.MethodsFirstly, the high-firing temperature (about 950 °C) quartz extracted from pottery unearthed at the Lingjiatan archaeological site was taken as a case study, spectral measurement platform was established using a Risø DA-20 luminescence dating instrument coupled with an Andor spectrometer and a charge-coupled device camera to analyze the luminescence spectral properties of archaeological quartz with high firing temperatures. Then, five filter combinations and two photomultiplier tubes (PMTs) were used to compare the TL and isothermal thermoluminescence (ITL) sensitivities of blue and red emissions. Kinetic parameters for Blue TL and Red TL were determined by deconvolving the glow curves with the general-order equation. Finally, exposure experiments were conducted on the Blue and Red TL using a solar simulator. The single aliquot regenerative dose (SAR) protocol was implemented to assess the applicability of the Blue TL-SAR, Blue ITL-SAR, Red TL-SAR, Red ITL-SAR, and optically stimulated luminescence (OSL)-SAR methods for dating archaeological quartz exposed to high temperatures during production or use.ConclusionsThe spectral analysis reveals that the archaeological quartz subjected to high firing temperature exhibits significant Red TL emissions at approximately 620 nm, which is correlated with the TL peak at 375 °C. This Red TL at 375 °C exhibits a marked insensitivity to light. The multi-wavelength TL, multiwavelength ITL, and conventional OSL dating results are consistent with the known radiocarbon age within the error range. This study demonstrates the potential feasibility of using luminescence signals of different wavelengths for chronological studies of archaeological materials subjected to high firing temperatures.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Techniquesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nuclear Techniques
    Article . 2024
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Techniquesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nuclear Techniques
      Article . 2024
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wang, Chunxin; Fan, Anchuan; Li, Bo; Yan, Zihan; +1 Authors

    BackgroundLuminescence dating technology has made significant advancements in determining the chronology of archaeological materials subjected to low firing temperatures. However, the luminescence dating of archaeological materials subjected to high firing temperatures remains challenging.PurposeThis study aims to explore the luminescence emission spectrum characteristics and luminescence properties of high-firing temperature quartz to verify the feasibility of thermoluminescence (TL) signals from different bands in luminescence dating.MethodsFirstly, the high-firing temperature (about 950 °C) quartz extracted from pottery unearthed at the Lingjiatan archaeological site was taken as a case study, spectral measurement platform was established using a Risø DA-20 luminescence dating instrument coupled with an Andor spectrometer and a charge-coupled device camera to analyze the luminescence spectral properties of archaeological quartz with high firing temperatures. Then, five filter combinations and two photomultiplier tubes (PMTs) were used to compare the TL and isothermal thermoluminescence (ITL) sensitivities of blue and red emissions. Kinetic parameters for Blue TL and Red TL were determined by deconvolving the glow curves with the general-order equation. Finally, exposure experiments were conducted on the Blue and Red TL using a solar simulator. The single aliquot regenerative dose (SAR) protocol was implemented to assess the applicability of the Blue TL-SAR, Blue ITL-SAR, Red TL-SAR, Red ITL-SAR, and optically stimulated luminescence (OSL)-SAR methods for dating archaeological quartz exposed to high temperatures during production or use.ConclusionsThe spectral analysis reveals that the archaeological quartz subjected to high firing temperature exhibits significant Red TL emissions at approximately 620 nm, which is correlated with the TL peak at 375 °C. This Red TL at 375 °C exhibits a marked insensitivity to light. The multi-wavelength TL, multiwavelength ITL, and conventional OSL dating results are consistent with the known radiocarbon age within the error range. This study demonstrates the potential feasibility of using luminescence signals of different wavelengths for chronological studies of archaeological materials subjected to high firing temperatures.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Techniquesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nuclear Techniques
    Article . 2024
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Techniquesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nuclear Techniques
      Article . 2024
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph