Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
9 Research products, page 1 of 1

  • Research software
  • Other research products
  • 2018-2022
  • EU
  • FR
  • EPOS

Relevance
arrow_drop_down
  • Open Access
    Authors: 
    Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    {"references": ["[1] Contribution to EPOS-IP WP10 STRAIN PRODUCT, Task 10.6 GNSS Products - Guidelines for DDSS Strain-rate derivation maps, A. Ganas, K. Chousianitis, version: 20 December 2016", "[2] Shen, Z.-K., M. Wang, Y. Zeng, and F. Wang, (2015), Strain determination using spatially discrete geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117-2127, doi: 10.1785/0120140247.", "[3] Veis, G., Billiris, H., Nakos, B., and Paradissis, D. (1992), Tectonic strain in Greece from geodetic measurements, C. R. Acad. Sci. Athens, 67:129\u2014166.", "[4] Anastasiou D., Ganas A., Legrand J., Bruyninx C., Papanikolaou X., Tsironi V. and Kapetanidis V. (2019). Tectonic strain distribution over Europe from EPN data. EGU General Assembly 2019, Geophysical Research Abstracts, Vol. 21, EGU2019-17744-1"]} StrainTool allows the estimation of Strain Tensor parameters, on the Earth's crust, given a list of data points, aka points on the Earth along with their tectonic velocities. Also provided are output parameters related to the plotting of strains/strain-fields using the Generic Mapping Tools software (http://www.soest.hawaii.edu/gmt/ ). The algorithm to calculate horizontal strains (or strain rates) through interpolation of GNSS velocities is based on the Shen et al (2015) method (doi: 10.1785/0120140247) This software package has received funding from the European Union's Horizon 2020 research and innovation programme EPOS under grant agreement N°676564

  • Open Access
    Authors: 
    Anastasiou, Dimitrios G.; Papanikolaou, Xanthos; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    {"references": ["[1] Contribution to EPOS-IP WP10 STRAIN PRODUCT, Task 10.6 GNSS Products - Guidelines for DDSS Strain-rate derivation maps, A. Ganas, K. Chousianitis, version: 20 December 2016", "[2] Shen, Z.-K., M. Wang, Y. Zeng, and F. Wang, (2015), Strain determination using spatially discrete geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117-2127, doi: 10.1785/0120140247.", "[3] Veis, G., Billiris, H., Nakos, B., and Paradissis, D. (1992), Tectonic strain in Greece from geodetic measurements, C. R. Acad. Sci. Athens, 67:129\u2014166.", "[4] Anastasiou D., Ganas A., Legrand J., Bruyninx C., Papanikolaou X., Tsironi V. and Kapetanidis V. (2019). Tectonic strain distribution over Europe from EPN data. EGU General Assembly 2019, Geophysical Research Abstracts, Vol. 21, EGU2019-17744-1", "[5] Anastasiou D., Papanikolaou X., Ganas A., Paradissis D. (2019). StrainTool: A software package to estimate strain tensor parameters (Version v1.0). DOI: 10.5281/zenodo.1297565"]} StrainWebTool is a web application developed to estimate strain tensor parameters using StrainTool Software. The development of the application was based on Flask microframework for Python. Bootstrap open source toolkit was used to enable a responsive web design and Leaflet open-source JavaScript library for producing interactive maps.

  • Open Access Polish
    Authors: 
    Baranowski, Pawe��; Kucewicz, Micha��; Konarzewski, Marcin; Stanis��awek, Sebastian;
    Publisher: Zenodo
    Project: EC | EPOS (262229)

    The models can be used for global-local modelling and simulation of destress blasting of rock mass near mine. The data combines three separate 3D solutions: the first was obtained for the small-scale problem – face(s) blasting process, and the second for the global scale problem – seismic wave propagation within very large volume of surrounding rock mass and the last one was obtained for a quasi-2D problem.

  • Research software . 2021
    Open Access
    Authors: 
    Paciello, Rossana; Vinciarelli, Valerio;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    The SHAPEness Metadata Editor is a Java desktop application conceived to help users creating and updating RDF metadata descriptions. It provides a rich user interface which allows users to easy populate and validate metadata, structured as graphs, against a set of SHACL constraints. The SHAPEness Metadata Editor has been developed in the framework of the European Plate Observing System (EPOS) where an extension of DCAT-AP, called EPOS-DCAT-AP, was created. As it is a SHACL-driven Metadata Editor, it is suitable for all kinds of domains or use cases which structure their knowledge by means of SHACL constraints. Version 1.2.1 Authors: Rossana Paciello (rossana.paciello@ingv.it) and Valerio Vinciarelli (valerio.vinciarelli@epos-eric.eu) Licensed under GPLv3 Download binary release: https://github.com/epos-eu/SHAPEness-Metadata-Editor/releases/tag/1.2.1

  • French
    Authors: 
    Sailler, Sylvain; Bertrand, Véronique; Walpersdorf, Andrea;
    Publisher: HAL CCSD
    Country: France
    Project: EC | EPOS (262229)

    La construction du réseau sismologique et géodésique français Résif a été lancée en 2009 pour fédérer, moderniser et développer les moyens d’observation géophysique de la Terre interne. Cette infrastructure de recherche nationale est aujourd'hui intégrée à l'infrastructure européenne EPOS et participe activement à sa réalisation et à son évolution. Par ailleurs, certaines composantes de Résif-Epos font partie de structures fédératives à l’échelle mondiale.Résif-Epos se base à la fois sur des réseaux permanents et sur des parcs d’instruments mobiles pour effectuer des mesures sismologiques, géodésiques et gravimétriques continues. Les données recueillies révèlent la structure et les déformations de notre planète. Elles contribuent également à la gestion durable des ressources naturelles et à la maîtrise des risques naturels d’origine tellurique.En sismologie, Résif-Epos développe un réseau permanent et dense de près de 200 capteurs à large bande passante sur l’ensemble du territoire métropolitain. Pour le compléter, le réseau accélérométrique permanent dispose de capteurs plutôt dédiés à l’étude des mouvements forts et localisés dans les zones les plus sismiques en métropole et Outre-Mer.Ces réseaux permettent aux chercheurs de mieux connaître et d'imager l'intérieur de la Terre depuis la croûte jusqu’au noyau terrestre. Outils de base pour le suivi en temps réel de l’activité sismique, ils aident également à estimer l'aléa sismique, c’est-à-dire la probabilité qu'une secousse dépasse un certain seuil en un lieu et sur une durée donnés.Résif-Epos intègre également un réseau permanent de stations géodésiques. Capables de mesurer des vitesses de déplacement du sol de l’ordre de quelques dixièmes de millimètres par an, elles permettent de suivre les déformations de l’écorce terrestre et les processus à l’origine des reliefs et de la sismicité, notamment au niveau des failles.Résif-Epos dispose par ailleurs de gravimètres qui mesurent les variations infimes du champ de pesanteur et permettent d’étudier la répartition et la dynamique des masses à l’intérieur de la Terre.En complément de ces réseaux permanents, Résif-Epos coordonne différents parcs d’instruments mobiles qui permettent de densifier temporairement les mesures en France ou dans des zones à fort intérêt scientifique en Europe ou dans le Monde. Ouverts à toute la communauté scientifique académique, ils proposent des équipements variés, modernes et parfois exceptionnels, comme un gravimètre absolu basé sur la chute d’atomes froids. Un système d'information performant gère la dizaine de téraoctets de données collectée annuellement. Les données brutes sont analysées, validées puis centralisées afin d’être sauvegardées et mises à disposition en temps réel et gratuitement, suivant une politique de science ouverte. Chaque année, des dizaines de millions de requêtes sont effectuées sur les serveurs par des scientifiques du monde entier.L'Institut National des Sciences de l'Univers du CNRS coordonne le consortium Résif-Epos, composé de la majorité des universités et organismes français concernés par la recherche en Géosciences. Plus d'une centaine de chercheurs, ingénieurs et techniciens collaborent au quotidien pour faire de Résif-Epos un formidable outil scientifique au service de la communauté mondiale des sciences de la Terre.

  • Other research product . Other ORP type . 2021
    Open Access Italian
    Authors: 
    Lazzeri E.; Cocco M.; Bailo D.; Sarretta A.; Locati M.; Pavone G.;
    Country: Italy
    Project: EC | OpenAIRE-Advance (777541), EC | EOSC-Pillar (857650), EC | EPOS IP (676564)

    A cycle of four webinars on Open Science and Open Access for Earth and environmental sciences, with discipline-specific tools and practical resources. Course outline: Module 1: - Introduction and motivations - Open Science in Solid Earth Science Module 2: - Research Data Management - OS in solid Earth sciences: the EPOS research infrastructure experience Module 3: - FAIR principles and Open Data - Implementing FAIR. Considerations from the solid Earth domain Module 4: - The Data Management Plan - The adoption of Open Science Paradigm at INGV - Practical Tips

  • Other research product . Other ORP type . 2019
    Open Access English
    Authors: 
    Theodoridou, Maria; Ivanovic, Dragan; Martin, Paul; Remy, Laurent; Muckensturm, Marc;
    Publisher: Zenodo
    Project: EC | ENVRI PLUS (654182), EC | VRE4EIC (676247), EC | EPOS IP (676564)

    This archive contains a set of mappings in X3ML format between a number of metadata record schemes and CERIF RDF (based on CERIF 1.6). These mapping files were created during the EU Horizon 2020 VRE4EIC project as part of the development of a joint catalogue for resources hosted by various European research infrastructures serving the environmental and earth sciences. The following source metadata schemes are supported: Dublin Core DCAT-AP EPOS DCAT-AP (extension of DCAT-AP used within the EPOS research infrastructure) ISO 19139 OIL-E (Open Information Linking for Environmental research infrastructures) The scheme used by EUDAT's B2FIND service (based on CKAN) The scheme used within the D4Science platform (based on CKAN) In addition, test mappings have been developed for the transformation of RBAC data, WADL specifications, and WSDL (both 1.1 and 2.0), transformation of CERIF and VRE4EIC classification schemes into CERIF RDF, and generation of additional provenance data for data originating from EPOS or the ENVRI environmental research infrastructure cluster. To make use of these mappings, it is necessary to have a means of interpreting X3ML documents. See: https://github.com/isl/x3ml To directly view and edit these mappings, as well as to test them, it is best to use the 3M editor (which interprets X3ML). See: https://github.com/isl/Mapping-Memory-Manager 3M can be set up and run as an online service in Apache Tomcat (version 8 or higher). These mappings are provided to interested parties who wish to replicate or build upon the metadata mapping activity of the VRE4EIC project, or wish to import metadata records from external sources into a single RDF triple store structured according to the CERIF 1.6 standard. They represent the best state of mappings as of the end of the VRE4EIC project, in October 2018, but are provided as-is, with no assertion of completeness, soundness or fitness-for-purpose out of the box. For queries regarding the mappings in this archive, or for information about the VRE4EIC project in general, email vre4eic-contact at ercim dot eu.

  • Open Access
    Authors: 
    Dr. Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    StrainTool allows the estimation of Strain Tensor parameters, on the Earth's crust, given a list of data points, aka points on the Earth along with their tectonic velocities. Also provided are output parameters related to the plotting of strains/strain-fields using the Generic Mapping Tools software (http://www.soest.hawaii.edu/gmt/ ). Significant update at second invariant calculation formula at version 1.0-rc2.0.

  • Open Access
    Authors: 
    Dr. Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    StrainWebTool is a web application developed to estimate strain tensor parameters using StrainTool Software. The development of the application was based on Flask microframework for Python. Bootstrap open source toolkit was used to enable a responsive web design and Leaflet open-source JavaScript library for producing interactive maps.

Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
9 Research products, page 1 of 1
  • Open Access
    Authors: 
    Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    {"references": ["[1] Contribution to EPOS-IP WP10 STRAIN PRODUCT, Task 10.6 GNSS Products - Guidelines for DDSS Strain-rate derivation maps, A. Ganas, K. Chousianitis, version: 20 December 2016", "[2] Shen, Z.-K., M. Wang, Y. Zeng, and F. Wang, (2015), Strain determination using spatially discrete geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117-2127, doi: 10.1785/0120140247.", "[3] Veis, G., Billiris, H., Nakos, B., and Paradissis, D. (1992), Tectonic strain in Greece from geodetic measurements, C. R. Acad. Sci. Athens, 67:129\u2014166.", "[4] Anastasiou D., Ganas A., Legrand J., Bruyninx C., Papanikolaou X., Tsironi V. and Kapetanidis V. (2019). Tectonic strain distribution over Europe from EPN data. EGU General Assembly 2019, Geophysical Research Abstracts, Vol. 21, EGU2019-17744-1"]} StrainTool allows the estimation of Strain Tensor parameters, on the Earth's crust, given a list of data points, aka points on the Earth along with their tectonic velocities. Also provided are output parameters related to the plotting of strains/strain-fields using the Generic Mapping Tools software (http://www.soest.hawaii.edu/gmt/ ). The algorithm to calculate horizontal strains (or strain rates) through interpolation of GNSS velocities is based on the Shen et al (2015) method (doi: 10.1785/0120140247) This software package has received funding from the European Union's Horizon 2020 research and innovation programme EPOS under grant agreement N°676564

  • Open Access
    Authors: 
    Anastasiou, Dimitrios G.; Papanikolaou, Xanthos; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    {"references": ["[1] Contribution to EPOS-IP WP10 STRAIN PRODUCT, Task 10.6 GNSS Products - Guidelines for DDSS Strain-rate derivation maps, A. Ganas, K. Chousianitis, version: 20 December 2016", "[2] Shen, Z.-K., M. Wang, Y. Zeng, and F. Wang, (2015), Strain determination using spatially discrete geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117-2127, doi: 10.1785/0120140247.", "[3] Veis, G., Billiris, H., Nakos, B., and Paradissis, D. (1992), Tectonic strain in Greece from geodetic measurements, C. R. Acad. Sci. Athens, 67:129\u2014166.", "[4] Anastasiou D., Ganas A., Legrand J., Bruyninx C., Papanikolaou X., Tsironi V. and Kapetanidis V. (2019). Tectonic strain distribution over Europe from EPN data. EGU General Assembly 2019, Geophysical Research Abstracts, Vol. 21, EGU2019-17744-1", "[5] Anastasiou D., Papanikolaou X., Ganas A., Paradissis D. (2019). StrainTool: A software package to estimate strain tensor parameters (Version v1.0). DOI: 10.5281/zenodo.1297565"]} StrainWebTool is a web application developed to estimate strain tensor parameters using StrainTool Software. The development of the application was based on Flask microframework for Python. Bootstrap open source toolkit was used to enable a responsive web design and Leaflet open-source JavaScript library for producing interactive maps.

  • Open Access Polish
    Authors: 
    Baranowski, Pawe��; Kucewicz, Micha��; Konarzewski, Marcin; Stanis��awek, Sebastian;
    Publisher: Zenodo
    Project: EC | EPOS (262229)

    The models can be used for global-local modelling and simulation of destress blasting of rock mass near mine. The data combines three separate 3D solutions: the first was obtained for the small-scale problem – face(s) blasting process, and the second for the global scale problem – seismic wave propagation within very large volume of surrounding rock mass and the last one was obtained for a quasi-2D problem.

  • Research software . 2021
    Open Access
    Authors: 
    Paciello, Rossana; Vinciarelli, Valerio;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    The SHAPEness Metadata Editor is a Java desktop application conceived to help users creating and updating RDF metadata descriptions. It provides a rich user interface which allows users to easy populate and validate metadata, structured as graphs, against a set of SHACL constraints. The SHAPEness Metadata Editor has been developed in the framework of the European Plate Observing System (EPOS) where an extension of DCAT-AP, called EPOS-DCAT-AP, was created. As it is a SHACL-driven Metadata Editor, it is suitable for all kinds of domains or use cases which structure their knowledge by means of SHACL constraints. Version 1.2.1 Authors: Rossana Paciello (rossana.paciello@ingv.it) and Valerio Vinciarelli (valerio.vinciarelli@epos-eric.eu) Licensed under GPLv3 Download binary release: https://github.com/epos-eu/SHAPEness-Metadata-Editor/releases/tag/1.2.1

  • French
    Authors: 
    Sailler, Sylvain; Bertrand, Véronique; Walpersdorf, Andrea;
    Publisher: HAL CCSD
    Country: France
    Project: EC | EPOS (262229)

    La construction du réseau sismologique et géodésique français Résif a été lancée en 2009 pour fédérer, moderniser et développer les moyens d’observation géophysique de la Terre interne. Cette infrastructure de recherche nationale est aujourd'hui intégrée à l'infrastructure européenne EPOS et participe activement à sa réalisation et à son évolution. Par ailleurs, certaines composantes de Résif-Epos font partie de structures fédératives à l’échelle mondiale.Résif-Epos se base à la fois sur des réseaux permanents et sur des parcs d’instruments mobiles pour effectuer des mesures sismologiques, géodésiques et gravimétriques continues. Les données recueillies révèlent la structure et les déformations de notre planète. Elles contribuent également à la gestion durable des ressources naturelles et à la maîtrise des risques naturels d’origine tellurique.En sismologie, Résif-Epos développe un réseau permanent et dense de près de 200 capteurs à large bande passante sur l’ensemble du territoire métropolitain. Pour le compléter, le réseau accélérométrique permanent dispose de capteurs plutôt dédiés à l’étude des mouvements forts et localisés dans les zones les plus sismiques en métropole et Outre-Mer.Ces réseaux permettent aux chercheurs de mieux connaître et d'imager l'intérieur de la Terre depuis la croûte jusqu’au noyau terrestre. Outils de base pour le suivi en temps réel de l’activité sismique, ils aident également à estimer l'aléa sismique, c’est-à-dire la probabilité qu'une secousse dépasse un certain seuil en un lieu et sur une durée donnés.Résif-Epos intègre également un réseau permanent de stations géodésiques. Capables de mesurer des vitesses de déplacement du sol de l’ordre de quelques dixièmes de millimètres par an, elles permettent de suivre les déformations de l’écorce terrestre et les processus à l’origine des reliefs et de la sismicité, notamment au niveau des failles.Résif-Epos dispose par ailleurs de gravimètres qui mesurent les variations infimes du champ de pesanteur et permettent d’étudier la répartition et la dynamique des masses à l’intérieur de la Terre.En complément de ces réseaux permanents, Résif-Epos coordonne différents parcs d’instruments mobiles qui permettent de densifier temporairement les mesures en France ou dans des zones à fort intérêt scientifique en Europe ou dans le Monde. Ouverts à toute la communauté scientifique académique, ils proposent des équipements variés, modernes et parfois exceptionnels, comme un gravimètre absolu basé sur la chute d’atomes froids. Un système d'information performant gère la dizaine de téraoctets de données collectée annuellement. Les données brutes sont analysées, validées puis centralisées afin d’être sauvegardées et mises à disposition en temps réel et gratuitement, suivant une politique de science ouverte. Chaque année, des dizaines de millions de requêtes sont effectuées sur les serveurs par des scientifiques du monde entier.L'Institut National des Sciences de l'Univers du CNRS coordonne le consortium Résif-Epos, composé de la majorité des universités et organismes français concernés par la recherche en Géosciences. Plus d'une centaine de chercheurs, ingénieurs et techniciens collaborent au quotidien pour faire de Résif-Epos un formidable outil scientifique au service de la communauté mondiale des sciences de la Terre.

  • Other research product . Other ORP type . 2021
    Open Access Italian
    Authors: 
    Lazzeri E.; Cocco M.; Bailo D.; Sarretta A.; Locati M.; Pavone G.;
    Country: Italy
    Project: EC | OpenAIRE-Advance (777541), EC | EOSC-Pillar (857650), EC | EPOS IP (676564)

    A cycle of four webinars on Open Science and Open Access for Earth and environmental sciences, with discipline-specific tools and practical resources. Course outline: Module 1: - Introduction and motivations - Open Science in Solid Earth Science Module 2: - Research Data Management - OS in solid Earth sciences: the EPOS research infrastructure experience Module 3: - FAIR principles and Open Data - Implementing FAIR. Considerations from the solid Earth domain Module 4: - The Data Management Plan - The adoption of Open Science Paradigm at INGV - Practical Tips

  • Other research product . Other ORP type . 2019
    Open Access English
    Authors: 
    Theodoridou, Maria; Ivanovic, Dragan; Martin, Paul; Remy, Laurent; Muckensturm, Marc;
    Publisher: Zenodo
    Project: EC | ENVRI PLUS (654182), EC | VRE4EIC (676247), EC | EPOS IP (676564)

    This archive contains a set of mappings in X3ML format between a number of metadata record schemes and CERIF RDF (based on CERIF 1.6). These mapping files were created during the EU Horizon 2020 VRE4EIC project as part of the development of a joint catalogue for resources hosted by various European research infrastructures serving the environmental and earth sciences. The following source metadata schemes are supported: Dublin Core DCAT-AP EPOS DCAT-AP (extension of DCAT-AP used within the EPOS research infrastructure) ISO 19139 OIL-E (Open Information Linking for Environmental research infrastructures) The scheme used by EUDAT's B2FIND service (based on CKAN) The scheme used within the D4Science platform (based on CKAN) In addition, test mappings have been developed for the transformation of RBAC data, WADL specifications, and WSDL (both 1.1 and 2.0), transformation of CERIF and VRE4EIC classification schemes into CERIF RDF, and generation of additional provenance data for data originating from EPOS or the ENVRI environmental research infrastructure cluster. To make use of these mappings, it is necessary to have a means of interpreting X3ML documents. See: https://github.com/isl/x3ml To directly view and edit these mappings, as well as to test them, it is best to use the 3M editor (which interprets X3ML). See: https://github.com/isl/Mapping-Memory-Manager 3M can be set up and run as an online service in Apache Tomcat (version 8 or higher). These mappings are provided to interested parties who wish to replicate or build upon the metadata mapping activity of the VRE4EIC project, or wish to import metadata records from external sources into a single RDF triple store structured according to the CERIF 1.6 standard. They represent the best state of mappings as of the end of the VRE4EIC project, in October 2018, but are provided as-is, with no assertion of completeness, soundness or fitness-for-purpose out of the box. For queries regarding the mappings in this archive, or for information about the VRE4EIC project in general, email vre4eic-contact at ercim dot eu.

  • Open Access
    Authors: 
    Dr. Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    StrainTool allows the estimation of Strain Tensor parameters, on the Earth's crust, given a list of data points, aka points on the Earth along with their tectonic velocities. Also provided are output parameters related to the plotting of strains/strain-fields using the Generic Mapping Tools software (http://www.soest.hawaii.edu/gmt/ ). Significant update at second invariant calculation formula at version 1.0-rc2.0.

  • Open Access
    Authors: 
    Dr. Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;
    Publisher: Zenodo
    Project: EC | EPOS IP (676564)

    StrainWebTool is a web application developed to estimate strain tensor parameters using StrainTool Software. The development of the application was based on Flask microframework for Python. Bootstrap open source toolkit was used to enable a responsive web design and Leaflet open-source JavaScript library for producing interactive maps.

Send a message
How can we help?
We usually respond in a few hours.