Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Other literature type 2018 EnglishZenodo EC | EPOS IPAuthors: Massimo Cocco;Massimo Cocco;This report concerns Deliverable D1.1 EPOS IP Management Plan. The report describes the whole EPOS implementation phase consisting of the legal establishment of the EPOS-ERIC and of the TCS- ICS service implementation through the EPOS IP project. In particular, the report focuses on the description of the EPOS IP project concept and organization and on the management structure foreseen in the Grant Agreement and discussed with the EPOS IP partnership during the kick-off meeting. Indeed, this report describes the structure and the procedures adopted to guarantee the effective management of the EPOS IP project, the risks assessment and the strategies adopted to deal with ethics issues. The EPOS IP Management Plan is one of the three key documents describing the project organization and planning. The other two are the EPOS IP Communication Plan (D2.1 released at M6) and the TCS-ICS Implementation Plan (various deliverables released from M12).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1213698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1213698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016 SingaporeSeismological Society of America (SSA) EC | EPOS IPRémy Bossu; Matthieu Landès; Fréderic Roussel; Robert Steed; Gilles Mazet-Roux; Stacey S Martin; Susan E. Hough;doi: 10.1785/0220160120
The collection of earthquake testimonies (i.e., qualitative descriptions of felt shaking) is essential for macroseismic studies (i.e., studies gathering information on how strongly an earthquake was felt in different places), and when done rapidly and systematically, improves situational awareness and in turn can contribute to efficient emergency response. In this study, we present advances made in the collection of testimonies following earthquakes around the world using a thumbnail‐based questionnaire implemented on the European‐Mediterranean Seismological Centre (EMSC) smartphone app and its website compatible for mobile devices. In both instances, the questionnaire consists of a selection of thumbnails, each representing an intensity level of the European Macroseismic Scale 1998. We find that testimonies are collected faster, and in larger numbers, by way of thumbnail‐based questionnaires than by more traditional online questionnaires. Responses were received from all seismically active regions of our planet, suggesting that thumbnails overcome language barriers. We also observed that the app is not sufficient on its own, because the websites are the main source of testimonies when an earthquake strikes a region for the first time in a while; it is only for subsequent shocks that the app is widely used. Notably though, the speed of the collection of testimonies increases significantly when the app is used. We find that automated EMSC intensities as assigned by user‐specified thumbnails are, on average, well correlated with “Did You Feel It?” (DYFI) responses and with the three independently and manually derived macroseismic datasets, but there is a tendency for EMSC to be biased low with respect to DYFI at moderate and large intensities. We address this by proposing a simple adjustment that will be verified in future earthquakes. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Published version
Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220160120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220160120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018 France, Spain EC | EPOS IPSébastien, Chevrot; Matthieu, Sylvander; Jordi, Diaz; Roland, Martin; Frédéric, Mouthereau; Gianreto, Manatschal; Emmanuel, Masini; Sylvain, Calassou; Frank, Grimaud; Hélène, Pauchet; Mario, Ruiz;We exploit the data from five seismic transects deployed across the Pyrenees to characterize the deep architecture of this collisional orogen. We map the main seismic interfaces beneath each transect by depth migration of P-to-S converted phases. The migrated sections, combined with the results of recent tomographic studies and with maps of Bouguer and isostatic anomalies, provide a coherent crustal-scale picture of the belt. In the Western Pyrenees, beneath the North Pyrenean Zone, a continuous band of high density/velocity material is found at a very shallow level (~10 km) beneath the Mauleon basin and near Saint-Gaudens. In the Western Pyrenees, we also find evidence for northward continental subduction of Iberian crust, down to 50–70 km depth. In the Eastern Pyrenees, these main structural features are not observed. The boundary between these two domains is near longitude 1.3 °E, where geological field studies document a major change in the structure of the Cretaceous rift system, and possibly a shift of its polarity, suggesting that the deep orogenic architecture of the Pyrenees is largely controlled by structural inheritance. The PYROPE (Pyrenean Observational Portable Experiment) project was supported by the Agence Nationale de la Recherche (ANR) Blanc Programme (project PYROPE, ANR-09- BLAN-0229). We also acknowledge SISMOB, the French seismic mobile pool (a component of the RESIF consortium - http://seismology.resif.fr), for providing us with the seismological instrumentation for the temporary deployments. Field work has been also partially funded by the Spanish Ministry of Economy and Competitiveness through Project MISTERIOS (CGL2013-48601-C2-2-R). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2018Scientific ReportsOther literature type . Article . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/167544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 27 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2018Scientific ReportsOther literature type . Article . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/167544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Frontiers Media SA EC | ENVRI-FAIR, EC | VRE4EIC, EC | EPOS IPDaniele Bailo; Rossana Paciello; Manuela Sbarra; Riccardo Rabissoni; Valerio Vinciarelli; Massimo Cocco;FAIR principles have become reference criteria for promoting and evaluating openness of scientific data and for improving datasets Findability, Accessibility, Interoperability, and Reusability. This also applies to Research Infrastructures (RIs) in the solid Earth domain committed to provide access to seismological data, ground deformations inferred from terrestrial, and satellite observations, geological maps, and laboratory experiments. Such RIs have been indeed committed for a long time, well before the appearance of FAIR principles, to engage scientific communities involved in data collection, standardization, and quality control as well as in implementing metadata and services for qualification, storage and accessibility. By addressing open science and managing scientific data, they are working to adopt FAIR principles, thus having the onerous task of turning these principles into practices. In this work we argue that although FAIR principles have the merit of creating a common background of knowledge to engage communities in providing data in a standard way thus easing interoperability and data sharing, in order to make the adoption of FAIR principles less onerous there is an urgent need of clear models, reference architectures and technical guidelines which can support RI implementers in the realization of FAIR data provision systems. We therefore discuss the state of the art of FAIR principles ecosystem and open new perspectives by discussing a four-stages roadmap that reorganizes FAIR principles in a way that better fits to the approach of RI implementers, and a FAIR adoption process that relates FAIR principles to technologies for their implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.00003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.00003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2015Springer Science and Business Media LLC EC | EPOS IPJan Wiszniowski; Nguyen Van Giang; Beata Plesiewicz; Grzegorz Lizurek; Dinh Quoc Van; Le Quang Khoi; Stanislaw Lasocki;Song Tranh 2 hydropower plant and the reservoir containing backed up water are located in the Quang Nam province (Central Vietnam). The region experiences unusual seismic activity related to the reservoir impoundment, with earthquakes of magnitude up to 4.7. In result of cooperation between the Institute of Geophysics, Vietnam Academy of Sciences and Technology and the Institute of Geophysics, Polish Academy of Sciences a seismic network has been built to facilitate seismic monitoring of the Song Tranh 2 area. The network, operating since August 2013, consists of 10 seismic stations. Here we show that the network is sufficient for advanced data processing. The first results of monitoring of the earthquake activity in Song Tranh 2 area in the period between 2012 and 2014, especially the completeness of catalogs, study and comparisons between water level and the seismic activity suggest direct connection between reservoir exploitation and anthropogenic seismicity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/acgeo-2015-0021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/acgeo-2015-0021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 NetherlandsElsevier BV EC | ENVRI-FAIR, EC | VRE4EIC, EC | ENVRI PLUSPaul Martin; Laurent Remy; Maria Theodoridou; Keith G. Jeffery; Zhiming Zhao;Virtual Research Environments (VREs), also known as science gateways or virtual laboratories, assist researchers in data science by integrating tools for data discovery, data retrieval, workflow management and researcher collaboration, often coupled with a specific computing infrastructure. Recently, the push for better open data science has led to the creation of a variety of dedicated research infrastructures (RIs) that gather data and provide services to different research communities, all of which can be used independently of any specific VRE. There is therefore a need for generic VREs that can be coupled with the resources of many different RIs simultaneously, easily customised to the needs of specific communities. The resource metadata produced by these RIs rarely all adhere to any one standard or vocabulary however, making it difficult to search and discover resources independently of their providers without some translation into a common framework. Cross-RI search can be expedited by using mapping services that harvest RI-published metadata to build unified resource catalogues, but the development and operation of such services pose a number of challenges. In this paper, we discuss some of these challenges and look specifically at the VRE4EIC Metadata Portal, which uses X3ML mappings to build a single catalogue for describing data products and other resources provided by multiple RIs. The Metadata Portal was built in accordance to the e-VRE Reference Architecture, a microservice-based architecture for generic modular VREs, and uses the CERIF standard to structure its catalogued metadata. We consider the extent to which it addresses the challenges of cross-RI search, particularly in the environmental and earth science domain, and how it can be further augmented, for example to take advantage of linked vocabularies to provide more intelligent semantic search across multiple domains of discourse.
Future Generation Co... arrow_drop_down Future Generation Computer Systems; NARCISArticle . 2019Future Generation Computer SystemsOther literature type . Article . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.05.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 154visibility views 154 download downloads 153 Powered bymore_vert Future Generation Co... arrow_drop_down Future Generation Computer Systems; NARCISArticle . 2019Future Generation Computer SystemsOther literature type . Article . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.05.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euintegration_instructions Research softwarekeyboard_double_arrow_right Software 2018Zenodo EC | EPOS IPAuthors: Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;Dimitrios G. Anastasiou; Xanthos Papanikolaou; Dr. Athanassios Ganas; Prof. Demitris Paradissis;{"references": ["[1] Contribution to EPOS-IP WP10 STRAIN PRODUCT, Task 10.6 GNSS Products - Guidelines for DDSS Strain-rate derivation maps, A. Ganas, K. Chousianitis, version: 20 December 2016", "[2] Shen, Z.-K., M. Wang, Y. Zeng, and F. Wang, (2015), Strain determination using spatially discrete geodetic data, Bull. Seismol. Soc. Am., 105(4), 2117-2127, doi: 10.1785/0120140247.", "[3] Veis, G., Billiris, H., Nakos, B., and Paradissis, D. (1992), Tectonic strain in Greece from geodetic measurements, C. R. Acad. Sci. Athens, 67:129\u2014166.", "[4] Anastasiou D., Ganas A., Legrand J., Bruyninx C., Papanikolaou X., Tsironi V. and Kapetanidis V. (2019). Tectonic strain distribution over Europe from EPN data. EGU General Assembly 2019, Geophysical Research Abstracts, Vol. 21, EGU2019-17744-1"]} StrainTool allows the estimation of Strain Tensor parameters, on the Earth's crust, given a list of data points, aka points on the Earth along with their tectonic velocities. Also provided are output parameters related to the plotting of strains/strain-fields using the Generic Mapping Tools software (http://www.soest.hawaii.edu/gmt/ ). The algorithm to calculate horizontal strains (or strain rates) through interpolation of GNSS velocities is based on the Shen et al (2015) method (doi: 10.1785/0120140247) This software package has received funding from the European Union's Horizon 2020 research and innovation programme EPOS under grant agreement N°676564
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1297569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 521visibility views 521 download downloads 78 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1297569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2015 GermanyAmerican Geophysical Union (AGU) EC | EPOS IPPeter Evans; Angelo Strollo; Adam Clark; Tim Ahern; Robert Newman; John Clinton; Helle Pedersen; Catherine Pequegnat;doi: 10.1029/2015eo036971
In a move to give credit where it's due, the International Federation of Digital Seismograph Networks will link digital object identifiers to data from seismic networks and project deployments.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geoscienceshttps://doi.org/10.1029/2015EO...Other literature type . Article . 2015Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2015eo036971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geoscienceshttps://doi.org/10.1029/2015EO...Other literature type . Article . 2015Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2015eo036971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018 ANR | RESIF-CORE, EC | EPOS IPdoi: 10.1029/2018tc005054
The availability of GPS survey data spanning 22 years, along with several independent velocity solutions including up to 16 years of permanent GPS data, presents a unique opportunity to search for persistent (and thus reliable) deformation patterns in the Western Alps, which in turn allow a reinterpretation of the active tectonics of this region. While GPS velocities are still too uncertain to be interpreted on an individual basis, the analysis of range-perpendicular GPS velocity profiles clearly highlights zones of extension in the center of the belt (15.3 to 3.1 nanostrain/year from north to south), with shortening in the forelands. The contrasting geodetic deformation pattern is coherent with earthquake focal mechanisms and related strain/stress patterns over the entire Western Alps. The GPS results finally provide a reliable and robust quantification of the regional strain rates. The observed vertical motions of 2.0 to 0.5 mm/year of uplift from north to south in the core of the Western Alps is interpreted to result from buoyancy forces related to postglacial rebound, erosional unloading, and/or viscosity anomalies in the crustal and lithospheric root. Spatial decorrelation between vertical and horizontal (seismicity related) deformation calls for a combination of processes to explain the complex present-day dynamics of the Western Alps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018tc005054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018tc005054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2017Embargo end date: 24 Apr 2017 Switzerland EnglishETH Zurich EC | EPOS IPAtakan, Kuvvet; Bazin, Pierre-Louis; Bozzoli, Sabrina; Freda, Carmela; Giardini, Domenico; Hoffmann, Thomas; Kohler, Elisabeth; Kontkanen, Pirjo; Lauterjung, Jörn; Pedersen, Helle; Saleh, Kauzar; Sangianantoni, Agata;handle: 20.500.11850/229160
EPOS – the European Plate Observing System – is the ESFRI infrastructure serving the need of the solid Earth science community at large. The EPOS mission is to create a single sustainable, and distributed infrastructure that integrates the diverse European Research Infrastructures for solid Earth science under a common framework. Thematic Core Services (TCS) and Integrated Core Services (Central Hub, ICS-C and Distributed, ICS-D) are key elements, together with NRIs (National Research Infrastructures), in the EPOS architecture. Following the preparatory phase, EPOS has initiated formal steps to adopt an ERIC legal framework (European Research Infrastructure Consortium). The statutory seat of EPOS will be in Rome, Italy, while the ICS-C will be jointly operated by France, UK and Denmark. The TCS planned so far cover: seismology, near-fault observatories, GNSS data and products, volcano observations, satellite data, geomagnetic observations, anthropogenic hazards, geological information modelling, multiscale laboratories and geo-energy test beds for low carbon energy. In the ERIC process, EPOS and all its services must achieve sustainability from a legal, governance, financial, and technical point of view, as well as full harmonization with national infrastructure roadmaps. As EPOS is a distributed infrastructure, the TCSs have to be linked to the future EPOS ERIC from legal and governance perspectives. For this purpose the TCSs have started to organize themselves as consortia and negotiate agreements to define the roles of the different actors in the consortium as well as their commitment to contribute to the EPOS activities. The link to the EPOS ERIC shall be made by service agreements of dedicated Service Providers. A common EPOS data policy has also been developed, based on the general principles of Open Access and paying careful attention to licensing issues, quality control, and intellectual property rights, which shall apply to the data, data products, software and services (DDSS) accessible through EPOS. From a financial standpoint, EPOS elaborated common guidelines for all institutions providing services, and selected a costing model and funding approach which foresees a mixed support of the services via national contributions and ERIC membership fees. In the EPOS multi-disciplinary environment, harmonization and integration are required at different levels and with a variety of different stakeholders; to this purpose, a Service Coordination Board (SCB) and technical Harmonization Groups (HGs) were established to develop the EPOS metadata standards with the EPOS Integrated Central Services, and to harmonize data and product standards with other projects at European and international level, including e.g. ENVRI+, EUDAT and EarthCube (US). Geophysical Research Abstracts, 19 ISSN:1607-7962 ISSN:1029-7006
Research Collection arrow_drop_down ETH Zürich Research CollectionConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000229160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Collection arrow_drop_down ETH Zürich Research CollectionConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000229160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Other literature type 2018 EnglishZenodo EC | EPOS IPAuthors: Massimo Cocco;Massimo Cocco;This report concerns Deliverable D1.1 EPOS IP Management Plan. The report describes the whole EPOS implementation phase consisting of the legal establishment of the EPOS-ERIC and of the TCS- ICS service implementation through the EPOS IP project. In particular, the report focuses on the description of the EPOS IP project concept and organization and on the management structure foreseen in the Grant Agreement and discussed with the EPOS IP partnership during the kick-off meeting. Indeed, this report describes the structure and the procedures adopted to guarantee the effective management of the EPOS IP project, the risks assessment and the strategies adopted to deal with ethics issues. The EPOS IP Management Plan is one of the three key documents describing the project organization and planning. The other two are the EPOS IP Communication Plan (D2.1 released at M6) and the TCS-ICS Implementation Plan (various deliverables released from M12).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1213698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1213698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016 SingaporeSeismological Society of America (SSA) EC | EPOS IPRémy Bossu; Matthieu Landès; Fréderic Roussel; Robert Steed; Gilles Mazet-Roux; Stacey S Martin; Susan E. Hough;doi: 10.1785/0220160120
The collection of earthquake testimonies (i.e., qualitative descriptions of felt shaking) is essential for macroseismic studies (i.e., studies gathering information on how strongly an earthquake was felt in different places), and when done rapidly and systematically, improves situational awareness and in turn can contribute to efficient emergency response. In this study, we present advances made in the collection of testimonies following earthquakes around the world using a thumbnail‐based questionnaire implemented on the European‐Mediterranean Seismological Centre (EMSC) smartphone app and its website compatible for mobile devices. In both instances, the questionnaire consists of a selection of thumbnails, each representing an intensity level of the European Macroseismic Scale 1998. We find that testimonies are collected faster, and in larger numbers, by way of thumbnail‐based questionnaires than by more traditional online questionnaires. Responses were received from all seismically active regions of our planet, suggesting that thumbnails overcome language barriers. We also observed that the app is not sufficient on its own, because the websites are the main source of testimonies when an earthquake strikes a region for the first time in a while; it is only for subsequent shocks that the app is widely used. Notably though, the speed of the collection of testimonies increases significantly when the app is used. We find that automated EMSC intensities as assigned by user‐specified thumbnails are, on average, well correlated with “Did You Feel It?” (DYFI) responses and with the three independently and manually derived macroseismic datasets, but there is a tendency for EMSC to be biased low with respect to DYFI at moderate and large intensities. We address this by proposing a simple adjustment that will be verified in future earthquakes. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Published version
Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220160120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Digital Repository o... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220160120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018 France, Spain EC | EPOS IPSébastien, Chevrot; Matthieu, Sylvander; Jordi, Diaz; Roland, Martin; Frédéric, Mouthereau; Gianreto, Manatschal; Emmanuel, Masini; Sylvain, Calassou; Frank, Grimaud; Hélène, Pauchet; Mario, Ruiz;We exploit the data from five seismic transects deployed across the Pyrenees to characterize the deep architecture of this collisional orogen. We map the main seismic interfaces beneath each transect by depth migration of P-to-S converted phases. The migrated sections, combined with the results of recent tomographic studies and with maps of Bouguer and isostatic anomalies, provide a coherent crustal-scale picture of the belt. In the Western Pyrenees, beneath the North Pyrenean Zone, a continuous band of high density/velocity material is found at a very shallow level (~10 km) beneath the Mauleon basin and near Saint-Gaudens. In the Western Pyrenees, we also find evidence for northward continental subduction of Iberian crust, down to 50–70 km depth. In the Eastern Pyrenees, these main structural features are not observed. The boundary between these two domains is near longitude 1.3 °E, where geological field studies document a major change in the structure of the Cretaceous rift system, and possibly a shift of its polarity, suggesting that the deep orogenic architecture of the Pyrenees is largely controlled by structural inheritance. The PYROPE (Pyrenean Observational Portable Experiment) project was supported by the Agence Nationale de la Recherche (ANR) Blanc Programme (project PYROPE, ANR-09- BLAN-0229). We also acknowledge SISMOB, the French seismic mobile pool (a component of the RESIF consortium - http://seismology.resif.fr), for providing us with the seismological instrumentation for the temporary deployments. Field work has been also partially funded by the Spanish Ministry of Economy and Competitiveness through Project MISTERIOS (CGL2013-48601-C2-2-R). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2018Scientific ReportsOther literature type . Article . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/167544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 27 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2018Scientific ReportsOther literature type . Article . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/167544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Frontiers Media SA EC | ENVRI-FAIR, EC | VRE4EIC, EC | EPOS IPDaniele Bailo; Rossana Paciello; Manuela Sbarra; Riccardo Rabissoni; Valerio Vinciarelli; Massimo Cocco;FAIR principles have become reference criteria for promoting and evaluating openness of scientific data and for improving datasets Findability, Accessibility, Interoperability, and Reusability. This also applies to Research Infrastructures (RIs) in the solid Earth domain committed to provide access to seismological data, ground deformations inferred from terrestrial, and satellite observations, geological maps, and laboratory experiments. Such RIs have been indeed committed for a long time, well before the appearance of FAIR principles, to engage scientific communities involved in data collection, standardization, and quality control as well as in implementing metadata and services for qualification, storage and accessibility. By addressing open science and managing scientific data, they are working to adopt FAIR principles, thus having the onerous task of turning these principles into practices. In this work we argue that although FAIR principles have the merit of creating a common background of knowledge to engage communities in providing data in a standard way thus easing interoperability and data sharing, in order to make the adoption of FAIR principles less onerous there is an urgent need of clear models, reference architectures and technical guidelines which can support RI implementers in the realization of FAIR data provision systems. We therefore discuss the state of the art of FAIR principles ecosystem and open new perspectives by discussing a four-stages roadmap that reorganizes FAIR principles in a way that better fits to the approach of RI implementers, and a FAIR adoption process that relates FAIR principles to technologies for their implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.