Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
12 Research products, page 1 of 2

  • Publications
  • Research data
  • Research software
  • Other research products
  • 2018-2022
  • Open Access
  • DE
  • EPOS

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    von der Linden, Jens; Kimblin, Clare; McKenna, Ian; Bagley, Skyler; Li, Hsiao-Chi; Houim, Ryan; Kueny, Christopher S.; Kuhl, Allen; Grote, Dave; Converse, Mark; +4 more
    Publisher: Zenodo
    Project: EC | VOLTAIC (705619), EC | EPOS IP (676564), EC | VOLTAIC (705619), EC | EPOS IP (676564)

    Background This data is camera images and nozzle pressure gauge voltage traces from rapid decompression shots at the LMU shock tube facility. This data is discussed in the "Materials and Methods" section of the paper "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows". Electric sparks and explosive flows have long been associated with each other. Flowing dust particles originate charge through contact and separate based on inertia, resulting in strong electric fields supporting sparks. These sparks can cause explosions in dusty environments, especially those rich in carbon, such as coal mines and grain elevators. Recent observations of explosive events in nature and decompression experiments indicate that supersonic flows of explosions may alter the electrical discharge process. Shocks may suppress parts of the hierarchy of the discharge phenomena, such as leaders. In our decompression experiments, a shock tube ejects a flow of gas and particles into an expansion chamber. We imaged an illuminated plume from the decompression of a mixture of argon and <100 mg of diamond particles and observe sparks occurring below the sharp boundary of a condensation cloud. We also performed hydrodynamics simulations of the decompression event that provide insight into the conditions supporting the observed behavior. Simulation results agree closely with the experimentally observed Mach disk shock shape and height. This represents direct evidence that the sparks are sculpted by the outflow. The spatial and temporal scale of the sparks transmit an impression of the shock tube flow, a connection that could enable novel instrumentation to diagnose currently inaccessible supersonic granular phenomena. Accessing Data The prefixes of the filenames correspond to the shot dates and times listed in table S1 of the paper. The "_camera.zip" files contains tiff images of the camera frames. The ".ixc" file in each zip lists camera settings in plain text. The ".dat" file contains the voltage measurement of the nozzle pressure gauge. Row 1 is the header, row 2 is the time in seconds, and row 3 is the voltage of the pressure gauge in Volts. The peak pressure in the header can be used to relate the voltage to pressure. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with support from the Site-Directed Research and Development program, DOE/NV/03624--0956, and in part by the European Plate Observing Systems Transnational Access program of the European Community HORIZON 2020 research and innovation program under grant N 676564. CC acknowledges the support from the DFG grant CI 25/2-1 and from the European Community HORIZON 2020 research and innovation programme under the Marie Sklodowska Curie grant nr. 705619. LLNL-MI-817289. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific com- mercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. {"references": ["C. Cimarelli, M. Alatorre-Ibargengoitia, U. Kueppers, B. Scheu, D. Dingwell, Experimen- tal generation of volcanic lightning. Geology 42, 79\u201382 (2014)"]}

  • Open Access English
    Authors: 
    Florian Haslinger; Roberto Basili; Rémy Bossu; Carlo Cauzzi; Fabrice Cotton; Helen Crowley; Susana Custodio; Laurentiu Danciu; Mario Locati; Alberto Michelini; +3 more
    Publisher: Istituto Nazionale di Geofisica e Vulcanologia
    Countries: Portugal, Portugal, Switzerland, Switzerland, Germany
    Project: EC | EPOS SP (871121), EC | EPOS SP (871121)

    In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS. Annals of Geophysics, 65 (2) ISSN:1593-5213

  • Open Access
    Authors: 
    Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;
    Publisher: Oxford University Press (OUP)
    Country: Germany
    Project: EC | EPOS IP (676564)
  • Open Access English
    Authors: 
    Angelo Strollo; Didem Cambaz; John Clinton; Peter Danecek; Christos Evangelidis; Alexandru Marmureanu; Larsor Ottemöller; Helle Pedersen; Reinoud Sleeman; Klaus Stammler; +22 more
    Publisher: Zenodo
    Country: Germany
    Project: EC | EPOS (262229), EC | NERA (262330), EC | EUDAT (283304), EC | EPOS (262229), EC | NERA (262330), EC | EUDAT (283304)

    Abstract The European Integrated Data Archive (EIDA) is the infrastructure that provides access to the seismic-waveform archives collected by European agencies. This distributed system is managed by Observatories and Research Facilities for European Seismology. EIDA provides seamless access to seismic data from 12 data archives across Europe by means of standard services, exposing data on behalf of hundreds of network operators and research organizations. More than 12,000 stations from permanent and temporary networks equipped with seismometers, accelerometers, pressure sensors, and other sensors are accessible through the EIDA federated services. A growing user base currently counting around 3000 unique users per year has been requesting data and using EIDA services. The EIDA system is designed to scale up to support additional new services, data types, and nodes. Data holdings, services, and user numbers have grown substantially since the establishment of EIDA in 2013. EIDA is currently active in developing suitable data management approaches for new emerging technologies (e.g., distributed acoustic sensing) and challenges related to big datasets. This article reviews the evolution of EIDA, the current data holdings, and service portfolio, and gives an outlook on the current developments and the future envisaged challenges.

  • Open Access
    Authors: 
    Irene DeFelipe; Juan Alcalde; Eldar Baykiev; Isabel Bernal; Kittiphon Boonma; Ramon Carbonell; Stephanie Flude; Arnau Folch; Javier Fullea; Daniel García-Castellanos; +13 more
    Publisher: Frontiers Media SA
    Countries: Spain, United Kingdom, Spain, Germany, United Kingdom, Spain, Spain
    Project: EC | ChEESE (823844), EC | EPOS IP (676564), EC | SERA (730900), EC | EPOS SP (871121), EC | InnoVar (818144), EC | ChEESE (823844), EC | EPOS IP (676564), EC | SERA (730900), EC | EPOS SP (871121), EC | InnoVar (818144)

    The immense advances in computer power achieved in the last decades have had a significant impact in Earth science, providing valuable research outputs that allow the simulation of complex natural processes and systems, and generating improved forecasts. The development and implementation of innovative geoscientific software is currently evolving towards a sustainable and efficient development by integrating models of different aspects of the Earth system. This will set the foundation for a future digital twin of the Earth. The codification and update of this software require great effort from research groups and therefore, it needs to be preserved for its reuse by future generations of geoscientists. Here, we report on Geo-Soft-CoRe, a Geoscientific Software & Code Repository, hosted at the archive DIGITAL.CSIC. This is an open source, multidisciplinary and multiscale collection of software and code developed to analyze different aspects of the Earth system, encompassing tools to: 1) analyze climate variability; 2) assess hazards, and 3) characterize the structure and dynamics of the solid Earth. Due to the broad range of applications of these software packages, this collection is useful not only for basic research in Earth science, but also for applied research and educational purposes, reducing the gap between the geosciences and the society. By providing each software and code with a permanent identifier (DOI), we ensure its self-sustainability and accomplish the FAIR (Findable, Accessible, Interoperable and Reusable) principles. Therefore, we aim for a more transparent science, transferring knowledge in an easier way to the geoscience community, and encouraging an integrated use of computational infrastructure. Systematic Review Registration: https://digital.csic.es/handle/10261/193580 This research has been funded by the Projects EPOS IP 676564, EPOS SP 871121, SERA 730900, GeoCAM (PGC2018-095154-B-I00, Spanish Government) and the Center of Excellence for Exascale in Solid Earth (ChEESE) under the Grant Agreement 823844. IDF was funded by a FEDER-Junta de Castilla y León Postdoctoral contract (SA0084P20). JA and M-GL are funded by the Spanish Ministry of Science and Innovation through the Juan de la Cierva fellowship (IJC 2018-036074-I and IJC 2018-036826-I, respectively), funded by MCIN/AEI /10.13039/501100011033. AH is grateful for his Ramón y Cajal contract (RYC 2020-029253-I). Additional funding was provided by the Spanish Ministry of Science and Innovation (RTI 2018-095594-B-I00, PGC 2018-095154-B-100) and the Generalitat de Catalunya (AGAUR, 2017SGR1022). AP’s work was supported by: a Science Foundation Ireland Career Development Award (17/CDA/4695); an investigator award (16/IA/4520); a Marine Research Programme funded by the Irish Government, co-financed by the European Regional Development Fund (Grant-Aid Agreement No. PBA/CC/18/01); European Union’s Horizon 2020 research and innovation programme InnoVar under grant agreement No 818144; SFI Centre for Research Training in Foundations of Data Science 18/CRT/6049, and SFI Research Centre awards I-Form 16/RC/3872 and Insight 12/RC/2289_P2. AH and SG thank the Spanish research project PaleoModes (CGL2016-75281-C2-1-R) which provided some of their financial support. JF is supported by an Atracción de Talento senior fellowship (2018-T1/AMB/11493) funded by Comunidad Autonoma de Madrid (Spain), and a project funded by the Spanish Ministry of Science and Innovation (PID2020-114854GB-C22). Systematic Review Registration: https://digital.csic.es/handle/10261/193580 Peer reviewed

  • Publication . Article . 2019
    Open Access English
    Authors: 
    Cielesta, Szymon; Orlecka-Sikora, Beata; Staszek, Monika; Urban, Paweł; Olszewska, Dorota; Ruigrok, Elmer; Toon, Sam; Picozzi, Matteo; Kwiatek, Grzegorz; Cesca, Simone; +5 more
    Countries: Netherlands, Germany, Germany, United Kingdom, Netherlands
    Project: EC | EPOS IP (676564), EC | SHEER (640896), EC | EPOS IP (676564), EC | SHEER (640896)

    The SHEER database brings together a large amount of data of various types: interdisciplinary site data from seven independent episodes, research data and those for the project results dissemination process. This concerns mainly shale gas exploitation test sites, processing procedures, results of data interpretation and recommendations. The smart SHEER database harmonizes data from different fields (geophysical, geochemical, geological, technological, etc.), creates and provides access to an advanced database of case studies of environmental impact indicators associated with shale gas exploitation and exploration, which previously did not exist. A unique component of the SHEER database comes from the monitoring activity performed during the project in one active shale gas exploration and exploitation site at Wysin, Poland, which started from the pre-operational phase. The SHEER database is capable of the adoption of new data such as results of other Work Packages and has developed an over-arching structure for higher-level integration.

  • Publication . Article . Preprint . 2021 . Embargo End Date: 01 Jan 2022
    Open Access
    Authors: 
    Jens von der Linden; Clare Kimblin; Ian McKenna; Skyler Bagley; Hsiao-Chi Li; Ryan W. Houim; C. Kueny; Allen Kuhl; D.P. Grote; Mark Converse; +4 more
    Publisher: arXiv
    Project: EC | EPOS IP (676564), EC | VOLTAIC (705619)

    Volcanic jet flows in explosive eruptions emit radio frequency signatures, indicative of their fluid dynamic and electrostatic conditions. The emissions originate from sparks supported by an electric field built up by the ejected charged volcanic particles. When shock-defined, low-pressure regions confine the sparks, the signatures may be limited to high-frequency content corresponding to the early components of the avalanche-streamer-leader hierarchy. Here, we image sparks and a standing shock together in a transient supersonic jet of micro-diamonds entrained in argon. Fluid dynamic and kinetic simulations of the experiment demonstrate that the observed sparks originate upstream of the standing shock. The sparks are initiated in the rarefaction region, and cut off at the shock, which would limit their radio frequency emissions to a tell-tale high-frequency regime. We show that sparks transmit an impression of the explosive flow, and open the way for novel instrumentation to diagnose currently inaccessible explosive phenomena. Comment: 9 pages, 6 figures

  • Open Access English
    Authors: 
    Shevchenko, A.; Dvigalo, V.; Walter, T.; Mania, R.;
    Publisher: GFZ Data Services
    Country: Germany
    Project: EC | EPOS IP (676564)

    Decades of photogrammetric records at Bezymianny, one of the most active volcanoes on Earth, allow unveiling morphological changes, eruption and intrusion dynamics, erosion, lava and tephra deposition processes. This data publication releases an almost 7-decade long record, retrieved from airborne, satellite, and UAV platforms. The Kamchatkan Institute of Volcanology and Seismology released archives of high-resolution aerial images acquired in 1967-2013. We complemented the aerial datasets with 2017 Pleiades tri-stereo satellite and UAV images. The images were processed using Erdas Imagine and Photomod software. Here we publish nine quality-controlled point clouds in LAS format referenced to the WGS84 (UTM zone 57N). By comparing the point clouds we were able to describe topographic changes and calculate volumetric differences, details of which were further analyzed in Shevchenko et al. (2020, https://doi.org/...). The ~5-decade-long photogrammetric record was achieved by 8 aerial and 1 satellite-UAV datasets. The 8 sets of near nadir aerial photographs acquired in 1967, 1968, 1976, 1977, 1982, 1994, 2006, and 2013 were taken with various photogrammetry cameras dedicated for topographic analysis, specifically the AFA 41-10 camera (1967, 1968, 1976, and 1977; focal length = 99.086 mm), the TAFA 10 camera (1982 and 1994; focal length = 99.120 mm), and the AFA TE-140 camera (2006 and 2013; focal length = 139.536 mm). These analog cameras have all an 18×18 cm frame size. The acquisition flight altitude above the mean surface of Bezymianny varied from 1,500-2,500 m above mean surface elevation, translating up to >5,000 m above sea level. For photogrammetric processing, we used 3-4 consecutive shots that provided a 60-70% forward overlap. The analog photo negatives were digitized by scanning with Epson Perfection V750 Pro scanner in a resolution of 2,400 pixels/inch (approx. pixel (px) size = 0.01 mm). The mean scale within a single photograph depends on the distance to the surface and corresponds on average to 1:10,000-1:20,000. Thus, each px in the scanned image represents about 10-20 cm resolution on the ground. The coordinates of 12 ground control points were derived from a Theo 010B theodolite dataset collected at geodetic benchmarks during a 1977 fieldwork. These benchmarks were established on the slopes of Bezymianny before the 1977 aerial survey and then captured with the AFA 41-10 aerial camera. The most recent was a satellite dataset acquired on 2017-09-09 by the PHR 1B sensor aboard the Pleiades satellite (AIRBUS Defence & Space) operated by the French space agency (CNES). The forward, nadir and backward camera configuration allows revisiting any point on earth and was tasked for the acquisition of Bezymianny to provide a 0.5 m resolution panchromatic imagery dataset. In order to improve the Pleiades data, we complemented them with UAV data collected on 2017-07-29 with DJI Mavic Pro during fieldwork at Bezymianny. This data publication includes a description of the data (in pdf format) and the nine processed and controlled three-dimensional point clouds (in LAS format). The point clouds can be easily interpolated and imported into most open and commercially available geographic information system (GIS) software. Further details on data and data handling are provided in Shevchenko et al. (2020).

  • Open Access English
    Authors: 
    Beata Orlecka-Sikora; Stanislaw Lasocki; J. Kocot; Tomasz Szepieniec; Jean Robert Grasso; Alexander Garcia-Aristizabal; Marc Schaming; Pawel Urban; G.M. Jones; I. G. Stimpson; +22 more
    Publisher: HAL CCSD
    Countries: United Kingdom, France, France, Germany, Finland, United Kingdom, Germany
    Project: EC | EPOS IP (676564), EC | SERA (730900), EC | EPOS IP (676564), EC | SERA (730900)

    AbstractMining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).

  • Open Access
    Authors: 
    Jan Henninges; Evgeniia Martuganova; Manfred Stiller; Ben Norden; Charlotte M. Krawczyk;
    Country: Germany
    Project: EC | EPOS IP (676564), EC | DESTRESS (691728)

    We performed so-far-unprecedented deep wireline vertical seismic profiling at the Groß Schönebeck site with the novel method of distributed acoustic sensing (DAS) to gain more detailed information on the structural setting and geometry of the geothermal reservoir, which is comprised of volcanic rocks and sediments of Lower Permian age. During the survey of 4 d only, we acquired data for 61 source positions using hybrid wireline fiber-optic sensor cables deployed in two 4.3 km deep, already existing wells. While most of the recorded data have a very good signal-to-noise ratio, individual sections of the profiles are affected by characteristic coherent noise patterns. This ringing noise results from incomplete coupling of the sensor cable to the borehole wall, and it can be suppressed to a large extent using suitable filtering methods. After conversion to strain rate, the DAS data exhibit a high similarity to the vertical component data of a conventional borehole geophone. We derived accurate time–depth relationships, interval velocities, and corridor stacks from the recorded data. Based on integration with other well data and geological information, we show that the top of a porous and permeable sandstone interval of the geothermal reservoir can be identified by a positive reflection event. Overall, the sequence of reflection events shows a different character for both wells explained by lateral changes in lithology. The top of the volcanic rocks has a somewhat different seismic response in both wells, and no clear reflection event is obvious at the postulated base of the volcanic rocks, so that their thickness cannot be inferred from individual reflection events in the seismic data alone. The DAS method enabled measurements at elevated temperatures up to 150 ∘C over extended periods and led to significant time and cost savings compared to deployment of a conventional borehole geophone string. This wireline approach finally suggests significant implications for observation options in old wells for a variety of purposes.

Send a message
How can we help?
We usually respond in a few hours.