Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Portugal, Norway, Switzerland, Germany English EC | EPOS SPFlorian Haslinger; Roberto Basili; Rémy Bossu; Carlo Cauzzi; Fabrice Cotton; Helen Crowley; Susana Custodio; Laurentiu Danciu; Mario Locati; Alberto Michelini; Irene Molinari; Lars Ottemöller; Stefano Parolai;handle: 10451/53665 , 20.500.11850/549765 , 11250/3058781
In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS. Annals of Geophysics, 65 (2) ISSN:1593-5213
Annals of Geophysics arrow_drop_down Universidade de Lisboa: Repositório.ULOther literature type . 2022Data sources: Universidade de Lisboa: Repositório.ULGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000549765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 31 Powered bymore_vert Annals of Geophysics arrow_drop_down Universidade de Lisboa: Repositório.ULOther literature type . 2022Data sources: Universidade de Lisboa: Repositório.ULGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000549765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany English EC | DESTRESS, EC | EPOS IPEvgeniia Martuganova; Manfred Stiller; Ben Norden; Jan Henninges; Charlotte M. Krawczyk;Geothermal exploration will help move towards a low-carbon economy and provide a basis for green and sustainable growth. The development of new practical, reliable methods for geophysical characterization of a reservoir has the potential to facilitate a broader application of deep geothermal energy. At the Groß Schönebeck in situ laboratory, a unique vertical seismic profiling (VSP) dataset was recorded in two 4.3 km deep geothermal boreholes using fibre-optic cables in early 2017. The experiment set-up consisted of 61 vibrator points organized in a spiral pattern around the well site to ensure a proper offset and azimuth distribution in the target reservoir section. Data were processed using a standard workflow for VSP. As a result, a detailed three-dimensional 0.75km×1km×4.5 km image around the existing boreholes was created using the Kirchhoff migration algorithm with restricted aperture. The imaging resolved small-scale features in the reservoir essential for the future exploration of the geothermal research site. Borehole data with vertical resolution up to 16 m revealed the existing depth variations of the Elbe reservoir sandstone horizon at 4.08–4.10 km depth and indications of an unconformity in the area where we expect volcanic rocks. In addition, in the borehole data a complex interlaying with numerous pinch-outs in the Upper Rotliegend reservoir section (3.8 to 4 km depth) was discovered. Thereby, we demonstrate that wireline fibre-optic data can significantly contribute to exploration by providing an efficient and reliable method for deep geothermal reservoir imaging.
DepositOnce arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-16270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert DepositOnce arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-16270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016 Germany, Italy English EC | EPOS IPLucia Luzi; Rodolfo Puglia; Emiliano Russo; Maria D'Amico; Chiara Felicetta; Francesca Pacor; Giovanni Lanzano; Ulubey Çeken; John Clinton; Giovanni Costa; Llambro Duni; Esmael Farzanegan; Philippe Guéguen; Constantin Ionescu; I. Kalogeras; Haluk Ozener; Damiano Pesaresi; Reinoud Sleeman; Angelo Strollo; Mehdi Zare;doi: 10.1785/0220150278
handle: 11368/2901856
This article describes the Engineering Strong‐Motion Database (ESM), developed in the framework of the European project Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation (NERA, see [Data and Resources][1]). ESM is specifically designed to provide end users only with quality‐checked, uniformly processed strong‐motion data and relevant parameters and has done so since 1969 in the Euro‐Mediterranean region. The database was designed for a large variety of stakeholders (expert seismologists, earthquake engineers, students, and professionals) with a user‐friendly and straightforward web interface. Users can access earthquake and station information and download waveforms of events with magnitude≥4.0 (unprocessed and processed acceleration, velocity, and displacement, and acceleration and displacement response spectra at 5% damping). Specific tools are also available to users to process strong‐motion data and select ground‐motion suites for code‐based seismic structural analyses. [1]: #sec-13
Archivio istituziona... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesSeismological Research LettersOther literature type . Article . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220150278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesSeismological Research LettersOther literature type . Article . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220150278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, Denmark, Germany, Italy, Turkey, Norway, Norway, France, Croatia, Croatia, Spain EnglishINGC EC | EPOSAndrey Babeyko; Stefano Lorito; Francisco Hernandez; Jörn Lauterjung; Finn Løvholt; Alexander Rudloff; Mathilde Sørensen; Alexey Androsov; Inigo Aniel-Quiroga; Alberto Armigliato; Maria Ana Baptista; Enrico Baglione; Roberto Basili; Jörn Behrens; Beatriz Brizuela; Sergio Bruni; Didem Cambaz; Juan Cantavella Nadal; Fernando Carillho; Ian Chandler; Denis Chang-Seng; Marinos Charalampakis; Lorenzo Cugliari; Clea Denamiel; Gözde Güney Doğan; Gaetano Festa; David Fuhrman; Alice-Agnes Gabriel; Pauline Galea; Steven Gibbons; Mauricio González; Laura Graziani; Marc-André Gutscher; Sven Harig; Helene Hebert; Constantin Ionescu; Fatemeh Jalayer; Nikos Kalligeris; Utku Kânoğlu; Piero Lanucara; Jorge Macias Sánchez; Shane Murphy; Öcal Necmioğlu; Rachid Omira; Gerassimos Papadopoulos; Raphaël Paris; Fabrizio Romano; Tiziana Rossetto; Jacopo Selva; Antonio Scala; Roberto Tonini; Konstantinos Trevlopoulos; Ioanna Triantafyllou; Roger Urgeles; Roberto Vallone; Ivica Vilibić; Manuela Volpe; Ahmet Yalciner;doi: 10.4401/ag-8762
handle: 10261/274486 , 11250/3051251 , 11250/3054189
Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development Special issue EPOS a Research Infrastructure in solid Earth: open science and innovation .-- 21 pages, 8 figures With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S) Peer reviewed
Bergen Open Research... arrow_drop_down Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyAnnals of Geophysics; Croatian Scientific Bibliography - CROSBIOther literature type . Article . 2022ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesDokuz Eylul University Research Information SystemArticle . 2022Data sources: Dokuz Eylul University Research Information SystemRecolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2022Norwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2022Data sources: Norwegian Geotechnical Institute (NGI) Digital ArchiveHAL Descartes; HAL Clermont Université; HAL-CEAArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4401/ag-8762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 214visibility views 214 download downloads 50 Powered bymore_vert Bergen Open Research... arrow_drop_down Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyAnnals of Geophysics; Croatian Scientific Bibliography - CROSBIOther literature type . Article . 2022ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesDokuz Eylul University Research Information SystemArticle . 2022Data sources: Dokuz Eylul University Research Information SystemRecolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2022Norwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2022Data sources: Norwegian Geotechnical Institute (NGI) Digital ArchiveHAL Descartes; HAL Clermont Université; HAL-CEAArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4401/ag-8762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Germany EnglishZenodo EC | EUDAT, EC | NERA, EC | EPOSAngelo Strollo; Didem Cambaz; John Clinton; Peter Danecek; Christos Evangelidis; Alexandru Marmureanu; Larsor Ottemöller; Helle Pedersen; Reinoud Sleeman; Klaus Stammler; Daniel Armbruster; Jarek Bieńkowski; K. Boukouras; Peter Evans; Massimo Fares; Cristian Neagoe; Stefan Heimers; Andres Heinloo; Matthias Hoffmann; Philippe Kaestli; Valentino Lauciani; Jan Michálek; Erich Odon Muhire; Mehmet Ozer; Lucian Palangeanu; Constanza Pardo; Javier Quinteros; Matteo Quintiliani; Jose Antonio Jara-Salvador; Jonathan Schaeffer; Antje Schloemer; Nikolaos Triantafyllis;doi: 10.1785/0220200413
Abstract The European Integrated Data Archive (EIDA) is the infrastructure that provides access to the seismic-waveform archives collected by European agencies. This distributed system is managed by Observatories and Research Facilities for European Seismology. EIDA provides seamless access to seismic data from 12 data archives across Europe by means of standard services, exposing data on behalf of hundreds of network operators and research organizations. More than 12,000 stations from permanent and temporary networks equipped with seismometers, accelerometers, pressure sensors, and other sensors are accessible through the EIDA federated services. A growing user base currently counting around 3000 unique users per year has been requesting data and using EIDA services. The EIDA system is designed to scale up to support additional new services, data types, and nodes. Data holdings, services, and user numbers have grown substantially since the establishment of EIDA in 2013. EIDA is currently active in developing suitable data management approaches for new emerging technologies (e.g., distributed acoustic sensing) and challenges related to big datasets. This article reviews the evolution of EIDA, the current data holdings, and service portfolio, and gives an outlook on the current developments and the future envisaged challenges.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220200413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 23 Powered bymore_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1785/0220200413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, Spain, Germany, United Kingdom, Spain English EC | InnoVar, EC | EPOS SP, EC | ChEESEIrene DeFelipe; Juan Alcalde; Eldar Baykiev; Isabel Bernal; Kittiphon Boonma; Ramon Carbonell; Stephanie Flude; Arnau Folch; Javier Fullea; Daniel García-Castellanos; Adelina Geyer; Santiago Giralt; Armand Hernández; Ivone Jiménez-Munt; Ajay Kumar; Maria-Gema Llorens; Joan Martí; Cecilia Molina; Andrés Olivar-Castaño; Andrew Parnell; Martin Schimmel; Montserrat Torné; Sergi Ventosa;handle: 10261/267877 , 2183/31538
The immense advances in computer power achieved in the last decades have had a significant impact in Earth science, providing valuable research outputs that allow the simulation of complex natural processes and systems, and generating improved forecasts. The development and implementation of innovative geoscientific software is currently evolving towards a sustainable and efficient development by integrating models of different aspects of the Earth system. This will set the foundation for a future digital twin of the Earth. The codification and update of this software require great effort from research groups and therefore, it needs to be preserved for its reuse by future generations of geoscientists. Here, we report on Geo-Soft-CoRe, a Geoscientific Software & Code Repository, hosted at the archive DIGITAL.CSIC. This is an open source, multidisciplinary and multiscale collection of software and code developed to analyze different aspects of the Earth system, encompassing tools to: 1) analyze climate variability; 2) assess hazards, and 3) characterize the structure and dynamics of the solid Earth. Due to the broad range of applications of these software packages, this collection is useful not only for basic research in Earth science, but also for applied research and educational purposes, reducing the gap between the geosciences and the society. By providing each software and code with a permanent identifier (DOI), we ensure its self-sustainability and accomplish the FAIR (Findable, Accessible, Interoperable and Reusable) principles. Therefore, we aim for a more transparent science, transferring knowledge in an easier way to the geoscience community, and encouraging an integrated use of computational infrastructure. Systematic Review Registration: https://digital.csic.es/handle/10261/193580 This research has been funded by the Projects EPOS IP 676564, EPOS SP 871121, SERA 730900, GeoCAM (PGC2018-095154-B-I00, Spanish Government) and the Center of Excellence for Exascale in Solid Earth (ChEESE) under the Grant Agreement 823844. IDF was funded by a FEDER-Junta de Castilla y León Postdoctoral contract (SA0084P20). JA and M-GL are funded by the Spanish Ministry of Science and Innovation through the Juan de la Cierva fellowship (IJC 2018-036074-I and IJC 2018-036826-I, respectively), funded by MCIN/AEI /10.13039/501100011033. AH is grateful for his Ramón y Cajal contract (RYC 2020-029253-I). Additional funding was provided by the Spanish Ministry of Science and Innovation (RTI 2018-095594-B-I00, PGC 2018-095154-B-100) and the Generalitat de Catalunya (AGAUR, 2017SGR1022). AP’s work was supported by: a Science Foundation Ireland Career Development Award (17/CDA/4695); an investigator award (16/IA/4520); a Marine Research Programme funded by the Irish Government, co-financed by the European Regional Development Fund (Grant-Aid Agreement No. PBA/CC/18/01); European Union’s Horizon 2020 research and innovation programme InnoVar under grant agreement No 818144; SFI Centre for Research Training in Foundations of Data Science 18/CRT/6049, and SFI Research Centre awards I-Form 16/RC/3872 and Insight 12/RC/2289_P2. AH and SG thank the Spanish research project PaleoModes (CGL2016-75281-C2-1-R) which provided some of their financial support. JF is supported by an Atracción de Talento senior fellowship (2018-T1/AMB/11493) funded by Comunidad Autonoma de Madrid (Spain), and a project funded by the Spanish Ministry of Science and Innovation (PID2020-114854GB-C22). Systematic Review Registration: https://digital.csic.es/handle/10261/193580 Peer reviewed
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesOxford University Research ArchiveOther literature type . 2022Data sources: Oxford University Research ArchiveRepositorio Institucional de la Universidad de OviedoArticle . 2022Data sources: Repositorio Institucional de la Universidad de OviedoRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2022Repositorio da Universidade da CoruñaArticle . 2022Data sources: Repositorio da Universidade da CoruñaFrontiers in Earth ScienceArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2022.828005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 104visibility views 104 download downloads 301 Powered bymore_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for GeosciencesOxford University Research ArchiveOther literature type . 2022Data sources: Oxford University Research ArchiveRepositorio Institucional de la Universidad de OviedoArticle . 2022Data sources: Repositorio Institucional de la Universidad de OviedoRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2022Repositorio da Universidade da CoruñaArticle . 2022Data sources: Repositorio da Universidade da CoruñaFrontiers in Earth ScienceArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2022.828005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 Germany EnglishNature Publishing Group UK EC | VOLCAPSE, EC | EPOS IPAuthors: Francesco Maccaferri; Nicole Richter; Thomas R. Walter;Francesco Maccaferri; Nicole Richter; Thomas R. Walter;pmc: PMC5653657
pmid: 29062023
Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. Flank instability and lateral collapse are a potential hazard at volcanic edifices. Here, the authors use numerical simulations to show that at Fogo volcano, lateral collapse can trigger a significant deflection of magma pathways in the crust, demonstrating how volcanic edifices may evolve.
Nature Communication... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesNature CommunicationsOther literature type . Article . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC5653657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Communication... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesNature CommunicationsOther literature type . Article . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC5653657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research 2020 Germany EnglishGFZ Data Services EC | EPOS IPAuthors: Shevchenko, A.; Dvigalo, V.; Walter, T.; Mania, R.;Shevchenko, A.; Dvigalo, V.; Walter, T.; Mania, R.;Decades of photogrammetric records at Bezymianny, one of the most active volcanoes on Earth, allow unveiling morphological changes, eruption and intrusion dynamics, erosion, lava and tephra deposition processes. This data publication releases an almost 7-decade long record, retrieved from airborne, satellite, and UAV platforms. The Kamchatkan Institute of Volcanology and Seismology released archives of high-resolution aerial images acquired in 1967-2013. We complemented the aerial datasets with 2017 Pleiades tri-stereo satellite and UAV images. The images were processed using Erdas Imagine and Photomod software. Here we publish nine quality-controlled point clouds in LAS format referenced to the WGS84 (UTM zone 57N). By comparing the point clouds we were able to describe topographic changes and calculate volumetric differences, details of which were further analyzed in Shevchenko et al. (2020, https://doi.org/...). The ~5-decade-long photogrammetric record was achieved by 8 aerial and 1 satellite-UAV datasets. The 8 sets of near nadir aerial photographs acquired in 1967, 1968, 1976, 1977, 1982, 1994, 2006, and 2013 were taken with various photogrammetry cameras dedicated for topographic analysis, specifically the AFA 41-10 camera (1967, 1968, 1976, and 1977; focal length = 99.086 mm), the TAFA 10 camera (1982 and 1994; focal length = 99.120 mm), and the AFA TE-140 camera (2006 and 2013; focal length = 139.536 mm). These analog cameras have all an 18×18 cm frame size. The acquisition flight altitude above the mean surface of Bezymianny varied from 1,500-2,500 m above mean surface elevation, translating up to >5,000 m above sea level. For photogrammetric processing, we used 3-4 consecutive shots that provided a 60-70% forward overlap. The analog photo negatives were digitized by scanning with Epson Perfection V750 Pro scanner in a resolution of 2,400 pixels/inch (approx. pixel (px) size = 0.01 mm). The mean scale within a single photograph depends on the distance to the surface and corresponds on average to 1:10,000-1:20,000. Thus, each px in the scanned image represents about 10-20 cm resolution on the ground. The coordinates of 12 ground control points were derived from a Theo 010B theodolite dataset collected at geodetic benchmarks during a 1977 fieldwork. These benchmarks were established on the slopes of Bezymianny before the 1977 aerial survey and then captured with the AFA 41-10 aerial camera. The most recent was a satellite dataset acquired on 2017-09-09 by the PHR 1B sensor aboard the Pleiades satellite (AIRBUS Defence & Space) operated by the French space agency (CNES). The forward, nadir and backward camera configuration allows revisiting any point on earth and was tasked for the acquisition of Bezymianny to provide a 0.5 m resolution panchromatic imagery dataset. In order to improve the Pleiades data, we complemented them with UAV data collected on 2017-07-29 with DJI Mavic Pro during fieldwork at Bezymianny. This data publication includes a description of the data (in pdf format) and the nine processed and controlled three-dimensional point clouds (in LAS format). The point clouds can be easily interpolated and imported into most open and commercially available geographic information system (GIS) software. Further details on data and data handling are provided in Shevchenko et al. (2020).
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesResearch . 2020Data sources: GFZ German Research Centre for GeosciencesAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::4e350122ad419a0f76fcbd5c31fdba7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesResearch . 2020Data sources: GFZ German Research Centre for GeosciencesAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::4e350122ad419a0f76fcbd5c31fdba7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Germany English EC | DESTRESS, EC | EPOS IPJan Henninges; Evgeniia Martuganova; Manfred Stiller; Ben Norden; Charlotte M. Krawczyk;We performed so-far-unprecedented deep wireline vertical seismic profiling at the Groß Schönebeck site with the novel method of distributed acoustic sensing (DAS) to gain more detailed information on the structural setting and geometry of the geothermal reservoir, which is comprised of volcanic rocks and sediments of Lower Permian age. During the survey of 4 d only, we acquired data for 61 source positions using hybrid wireline fiber-optic sensor cables deployed in two 4.3 km deep, already existing wells. While most of the recorded data have a very good signal-to-noise ratio, individual sections of the profiles are affected by characteristic coherent noise patterns. This ringing noise results from incomplete coupling of the sensor cable to the borehole wall, and it can be suppressed to a large extent using suitable filtering methods. After conversion to strain rate, the DAS data exhibit a high similarity to the vertical component data of a conventional borehole geophone. We derived accurate time–depth relationships, interval velocities, and corridor stacks from the recorded data. Based on integration with other well data and geological information, we show that the top of a porous and permeable sandstone interval of the geothermal reservoir can be identified by a positive reflection event. Overall, the sequence of reflection events shows a different character for both wells explained by lateral changes in lithology. The top of the volcanic rocks has a somewhat different seismic response in both wells, and no clear reflection event is obvious at the postulated base of the volcanic rocks, so that their thickness cannot be inferred from individual reflection events in the seismic data alone. The DAS method enabled measurements at elevated temperatures up to 150 ∘C over extended periods and led to significant time and cost savings compared to deployment of a conventional borehole geophone string. This wireline approach finally suggests significant implications for observation options in old wells for a variety of purposes.
DepositOnce arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-11869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DepositOnce arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-11869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 Germany, France, Finland, France EnglishHAL CCSD EC | EPOS IP, EC | SERABeata Orlecka-Sikora; Stanislaw Lasocki; J. Kocot; Tomasz Szepieniec; Jean Robert Grasso; Alexander Garcia-Aristizabal; Marc Schaming; Pawel Urban; G.M. Jones; I. G. Stimpson; Savka Dineva; Piotr Sałek; Konstantinos Michail Leptokaropoulos; Grzegorz Lizurek; Dorota Olszewska; Jean Schmittbuhl; Grzegorz Kwiatek; Aglaja Blanke; Gilberto Saccorotti; Karolina Chodzińska; Łukasz Rudziński; Izabela Dobrzycka; Grzegorz Mutke; Adam Barański; Aleksandra Pierzyna; Elena Kozlovskaya; Jouni Nevalainen; Jannes Kinscher; Jan Sileny; Mariusz Sterzel; Szymon Cielesta; Tomáš Fischer;AbstractMining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).
University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesScientific DataOther literature type . Article . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0429-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 9 Powered bymore_vert University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesScientific DataOther literature type . Article . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0429-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Portugal, Norway, Switzerland, Germany English EC | EPOS SPFlorian Haslinger; Roberto Basili; Rémy Bossu; Carlo Cauzzi; Fabrice Cotton; Helen Crowley; Susana Custodio; Laurentiu Danciu; Mario Locati; Alberto Michelini; Irene Molinari; Lars Ottemöller; Stefano Parolai;handle: 10451/53665 , 20.500.11850/549765 , 11250/3058781
In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS. Annals of Geophysics, 65 (2) ISSN:1593-5213
Annals of Geophysics arrow_drop_down Universidade de Lisboa: Repositório.ULOther literature type . 2022Data sources: Universidade de Lisboa: Repositório.ULGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000549765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 31 Powered bymore_vert Annals of Geophysics arrow_drop_down Universidade de Lisboa: Repositório.ULOther literature type . 2022Data sources: Universidade de Lisboa: Repositório.ULGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000549765&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany English EC | DESTRESS, EC | EPOS IPEvgeniia Martuganova; Manfred Stiller; Ben Norden; Jan Henninges; Charlotte M. Krawczyk;Geothermal exploration will help move towards a low-carbon economy and provide a basis for green and sustainable growth. The development of new practical, reliable methods for geophysical characterization of a reservoir has the potential to facilitate a broader application of deep geothermal energy. At the Groß Schönebeck in situ laboratory, a unique vertical seismic profiling (VSP) dataset was recorded in two 4.3 km deep geothermal boreholes using fibre-optic cables in early 2017. The experiment set-up consisted of 61 vibrator points organized in a spiral pattern around the well site to ensure a proper offset and azimuth distribution in the target reservoir section. Data were processed using a standard workflow for VSP. As a result, a detailed three-dimensional 0.75km×1km×4.5 km image around the existing boreholes was created using the Kirchhoff migration algorithm with restricted aperture. The imaging resolved small-scale features in the reservoir essential for the future exploration of the geothermal research site. Borehole data with vertical resolution up to 16 m revealed the existing depth variations of the Elbe reservoir sandstone horizon at 4.08–4.10 km depth and indications of an unconformity in the area where we expect volcanic rocks. In addition, in the borehole data a complex interlaying with numerous pinch-outs in the Upper Rotliegend reservoir section (3.8 to 4 km depth) was discovered. Thereby, we demonstrate that wireline fibre-optic data can significantly contribute to exploration by providing an efficient and reliable method for deep geothermal reservoir imaging.