Loading
description Publicationkeyboard_double_arrow_right Article 2015 Germany EC | EPOS IP (676564)Peter Evans; Angelo Strollo; Adam Clark; Tim Ahern; Robert Newman; John Clinton; Helle Pedersen; Catherine Pequegnat;doi: 10.1029/2015eo036971
In a move to give credit where it's due, the International Federation of Digital Seismograph Networks will link digital object identifiers to data from seismic networks and project deployments.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2015eo036971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Portugal, Switzerland, Norway English EC | EPOS SP (871121)Florian Haslinger; Roberto Basili; Rémy Bossu; Carlo Cauzzi; Fabrice Cotton; Helen Crowley; Susana Custodio; Laurentiu Danciu; Mario Locati; Alberto Michelini; Irene Molinari; Lars Ottemöller; Stefano Parolai;handle: 10451/53665 , 20.500.11850/549765 , 11250/3058781
In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS. Annals of Geophysics, 65 (2) ISSN:1593-5213
Annals of Geophysics arrow_drop_down Universidade de Lisboa: Repositório.ULOther literature type . 2022Data sources: Universidade de Lisboa: Repositório.ULGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4401/ag-8767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 26 Powered bydescription Publicationkeyboard_double_arrow_right Article 2019 Germany EC | EPOS IP (676564)Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;doi: 10.1093/gji/ggz178
Geophysical Journal ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gji/ggz178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2017 Germany EC | EPOS IP (676564), EC | SHEER (640896)Konstantinos Michail Leptokaropoulos; Monika Staszek; Stanislaw Lasocki; Patricia Martínez-Garzón; +1 AuthorsKonstantinos Michail Leptokaropoulos; Monika Staszek; Stanislaw Lasocki; Patricia Martínez-Garzón; Grzegorz Kwiatek;doi: 10.1093/gji/ggx481
The Geysers geothermal field located in California, USA, is the largest geothermal site in the world, operating since the 1960s. We here investigate and quantify the correlation between temporal seismicity evolution and variation of the injection data by examination of time-series through specified statistical tools (binomial test to investigate significant rate changes, cross correlation between seismic and injection data, b-value variation analysis). To do so, we utilize seismicity and operational data associated with two injection wells (Prati-9 and Prati-29) which cover a time period of approximately 7 yr (from November 2007 to August 2014). The seismicity is found to be significantly positively correlated with the injection rate. The maximum correlation occurs with a seismic response delay of ∼2 weeks, following injection operations. Those results are very stable even after considering hypocentral uncertainties, by applying a vertical shift of the events foci up to 300 m. Our analysis indicates also time variations of b-value, which exhibits significant positive correlation with injection rates.
Geophysical Journal ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGeophysical Journal InternationalArticle . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gji/ggx481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 67 Powered bydescription Publicationkeyboard_double_arrow_right Article 2019 United Kingdom, Germany, Netherlands English EC | EPOS IP (676564), EC | SHEER (640896)Cielesta, Szymon; Orlecka-Sikora, Beata; Staszek, Monika; Urban, Paweł; Olszewska, Dorota; Ruigrok, Elmer; Toon, Sam; Picozzi, Matteo; Kwiatek, Grzegorz; Cesca, Simone; López Comino, José Angel; Isherwood, Catherine; Montcoudiol, Nelly; Jarosławski, Janusz; non-UU output of UU-AW members;handle: 1874/380353
The SHEER database brings together a large amount of data of various types: interdisciplinary site data from seven independent episodes, research data and those for the project results dissemination process. This concerns mainly shale gas exploitation test sites, processing procedures, results of data interpretation and recommendations. The smart SHEER database harmonizes data from different fields (geophysical, geochemical, geological, technological, etc.), creates and provides access to an advanced database of case studies of environmental impact indicators associated with shale gas exploitation and exploration, which previously did not exist. A unique component of the SHEER database comes from the monitoring activity performed during the project in one active shale gas exploration and exploitation site at Wysin, Poland, which started from the pre-operational phase. The SHEER database is capable of the adoption of new data such as results of other Work Packages and has developed an over-arching structure for higher-level integration.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesActa GeophysicaArticle . 2019 . 2018GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11600-018-0205-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 0visibility views 0 download downloads 5 Powered bydescription Publicationkeyboard_double_arrow_right Article 2017 Germany EC | EPOS IP (676564), EC | VOLCAPSE (646858)F. Maccaferri; N. Richter; T. R. Walter;F. Maccaferri; N. Richter; T. R. Walter;pmc: PMC5653657
pmid: 29062023
Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. Flank instability and lateral collapse are a potential hazard at volcanic edifices. Here, the authors use numerical simulations to show that at Fogo volcano, lateral collapse can trigger a significant deflection of magma pathways in the crust, demonstrating how volcanic edifices may evolve.
Nature Communication... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC5653657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research 2020 Germany EnglishGFZ Data Services EC | EPOS IP (676564)Shevchenko, A.; Dvigalo, V.; Walter, T.; Mania, R.;Shevchenko, A.; Dvigalo, V.; Walter, T.; Mania, R.;Decades of photogrammetric records at Bezymianny, one of the most active volcanoes on Earth, allow unveiling morphological changes, eruption and intrusion dynamics, erosion, lava and tephra deposition processes. This data publication releases an almost 7-decade long record, retrieved from airborne, satellite, and UAV platforms. The Kamchatkan Institute of Volcanology and Seismology released archives of high-resolution aerial images acquired in 1967-2013. We complemented the aerial datasets with 2017 Pleiades tri-stereo satellite and UAV images. The images were processed using Erdas Imagine and Photomod software. Here we publish nine quality-controlled point clouds in LAS format referenced to the WGS84 (UTM zone 57N). By comparing the point clouds we were able to describe topographic changes and calculate volumetric differences, details of which were further analyzed in Shevchenko et al. (2020, https://doi.org/...). The ~5-decade-long photogrammetric record was achieved by 8 aerial and 1 satellite-UAV datasets. The 8 sets of near nadir aerial photographs acquired in 1967, 1968, 1976, 1977, 1982, 1994, 2006, and 2013 were taken with various photogrammetry cameras dedicated for topographic analysis, specifically the AFA 41-10 camera (1967, 1968, 1976, and 1977; focal length = 99.086 mm), the TAFA 10 camera (1982 and 1994; focal length = 99.120 mm), and the AFA TE-140 camera (2006 and 2013; focal length = 139.536 mm). These analog cameras have all an 18×18 cm frame size. The acquisition flight altitude above the mean surface of Bezymianny varied from 1,500-2,500 m above mean surface elevation, translating up to >5,000 m above sea level. For photogrammetric processing, we used 3-4 consecutive shots that provided a 60-70% forward overlap. The analog photo negatives were digitized by scanning with Epson Perfection V750 Pro scanner in a resolution of 2,400 pixels/inch (approx. pixel (px) size = 0.01 mm). The mean scale within a single photograph depends on the distance to the surface and corresponds on average to 1:10,000-1:20,000. Thus, each px in the scanned image represents about 10-20 cm resolution on the ground. The coordinates of 12 ground control points were derived from a Theo 010B theodolite dataset collected at geodetic benchmarks during a 1977 fieldwork. These benchmarks were established on the slopes of Bezymianny before the 1977 aerial survey and then captured with the AFA 41-10 aerial camera. The most recent was a satellite dataset acquired on 2017-09-09 by the PHR 1B sensor aboard the Pleiades satellite (AIRBUS Defence & Space) operated by the French space agency (CNES). The forward, nadir and backward camera configuration allows revisiting any point on earth and was tasked for the acquisition of Bezymianny to provide a 0.5 m resolution panchromatic imagery dataset. In order to improve the Pleiades data, we complemented them with UAV data collected on 2017-07-29 with DJI Mavic Pro during fieldwork at Bezymianny. This data publication includes a description of the data (in pdf format) and the nine processed and controlled three-dimensional point clouds (in LAS format). The point clouds can be easily interpolated and imported into most open and commercially available geographic information system (GIS) software. Further details on data and data handling are provided in Shevchenko et al. (2020).
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesResearch . 2020Data sources: GFZ German Research Centre for GeosciencesDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::4e350122ad419a0f76fcbd5c31fdba7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 United Kingdom, France, Finland, France, Czech Republic, Germany EnglishHAL CCSD EC | EPOS IP (676564), EC | SERA (730900)Beata Orlecka-Sikora; Stanislaw Lasocki; J. Kocot; Tomasz Szepieniec; Jean Robert Grasso; Alexander Garcia-Aristizabal; Marc Schaming; Pawel Urban; G.M. Jones; I. G. Stimpson; Savka Dineva; Piotr Sałek; Konstantinos Michail Leptokaropoulos; Grzegorz Lizurek; Dorota Olszewska; Jean Schmittbuhl; Grzegorz Kwiatek; Aglaja Blanke; Gilberto Saccorotti; Karolina Chodzińska; Łukasz Rudziński; Izabela Dobrzycka; Grzegorz Mutke; Adam Barański; Aleksandra Pierzyna; Elena Kozlovskaya; Jouni Nevalainen; Jannes Kinscher; Jan Sileny; Mariusz Sterzel; Szymon Cielesta; Tomáš Fischer;AbstractMining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).
Europe PubMed Centra... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesScientific DataArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0429-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 8 Powered bydescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Germany English EC | EPOS IP (676564), EC | DESTRESS (691728)Jan Henninges; Evgeniia Martuganova; Manfred Stiller; Ben Norden; Charlotte M. Krawczyk;We performed so-far-unprecedented deep wireline vertical seismic profiling at the Groß Schönebeck site with the novel method of distributed acoustic sensing (DAS) to gain more detailed information on the structural setting and geometry of the geothermal reservoir, which is comprised of volcanic rocks and sediments of Lower Permian age. During the survey of 4 d only, we acquired data for 61 source positions using hybrid wireline fiber-optic sensor cables deployed in two 4.3 km deep, already existing wells. While most of the recorded data have a very good signal-to-noise ratio, individual sections of the profiles are affected by characteristic coherent noise patterns. This ringing noise results from incomplete coupling of the sensor cable to the borehole wall, and it can be suppressed to a large extent using suitable filtering methods. After conversion to strain rate, the DAS data exhibit a high similarity to the vertical component data of a conventional borehole geophone. We derived accurate time–depth relationships, interval velocities, and corridor stacks from the recorded data. Based on integration with other well data and geological information, we show that the top of a porous and permeable sandstone interval of the geothermal reservoir can be identified by a positive reflection event. Overall, the sequence of reflection events shows a different character for both wells explained by lateral changes in lithology. The top of the volcanic rocks has a somewhat different seismic response in both wells, and no clear reflection event is obvious at the postulated base of the volcanic rocks, so that their thickness cannot be inferred from individual reflection events in the seismic data alone. The DAS method enabled measurements at elevated temperatures up to 150 ∘C over extended periods and led to significant time and cost savings compared to deployment of a conventional borehole geophone string. This wireline approach finally suggests significant implications for observation options in old wells for a variety of purposes.
DepositOnce arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-11869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2017 Germany EC | SHEER (640896), EC | EPOS IP (676564)Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martinez Garzon, P.;GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::0f0e04260c0f0901a6963840412cf38c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2015 Germany EC | EPOS IP (676564)Peter Evans; Angelo Strollo; Adam Clark; Tim Ahern; Robert Newman; John Clinton; Helle Pedersen; Catherine Pequegnat;doi: 10.1029/2015eo036971
In a move to give credit where it's due, the International Federation of Digital Seismograph Networks will link digital object identifiers to data from seismic networks and project deployments.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2015eo036971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Portugal, Switzerland, Norway English EC | EPOS SP (871121)Florian Haslinger; Roberto Basili; Rémy Bossu; Carlo Cauzzi; Fabrice Cotton; Helen Crowley; Susana Custodio; Laurentiu Danciu; Mario Locati; Alberto Michelini; Irene Molinari; Lars Ottemöller; Stefano Parolai;handle: 10451/53665 , 20.500.11850/549765 , 11250/3058781
In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS. Annals of Geophysics, 65 (2) ISSN:1593-5213
Annals of Geophysics arrow_drop_down Universidade de Lisboa: Repositório.ULOther literature type . 2022Data sources: Universidade de Lisboa: Repositório.ULGFZ German Research Centre for GeosciencesArticle . 2022Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4401/ag-8767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 26 Powered bydescription Publicationkeyboard_double_arrow_right Article 2019 Germany EC | EPOS IP (676564)Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;doi: 10.1093/gji/ggz178
Geophysical Journal ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gji/ggz178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2017 Germany EC | EPOS IP (676564), EC | SHEER (640896)Konstantinos Michail Leptokaropoulos; Monika Staszek; Stanislaw Lasocki; Patricia Martínez-Garzón; +1 AuthorsKonstantinos Michail Leptokaropoulos; Monika Staszek; Stanislaw Lasocki; Patricia Martínez-Garzón; Grzegorz Kwiatek;doi: 10.1093/gji/ggx481
The Geysers geothermal field located in California, USA, is the largest geothermal site in the world, operating since the 1960s. We here investigate and quantify the correlation between temporal seismicity evolution and variation of the injection data by examination of time-series through specified statistical tools (binomial test to investigate significant rate changes, cross correlation between seismic and injection data, b-value variation analysis). To do so, we utilize seismicity and operational data associated with two injection wells (Prati-9 and Prati-29) which cover a time period of approximately 7 yr (from November 2007 to August 2014). The seismicity is found to be significantly positively correlated with the injection rate. The maximum correlation occurs with a seismic response delay of ∼2 weeks, following injection operations. Those results are very stable even after considering hypocentral uncertainties, by applying a vertical shift of the events foci up to 300 m. Our analysis indicates also time variations of b-value, which exhibits significant positive correlation with injection rates.
Geophysical Journal ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGeophysical Journal InternationalArticle . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gji/ggx481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 67 Powered bydescription Publicationkeyboard_double_arrow_right Article 2019 United Kingdom, Germany, Netherlands English EC | EPOS IP (676564), EC | SHEER (640896)Cielesta, Szymon; Orlecka-Sikora, Beata; Staszek, Monika; Urban, Paweł; Olszewska, Dorota; Ruigrok, Elmer; Toon, Sam; Picozzi, Matteo; Kwiatek, Grzegorz; Cesca, Simone; López Comino, José Angel; Isherwood, Catherine; Montcoudiol, Nelly; Jarosławski, Janusz; non-UU output of UU-AW members;handle: 1874/380353
The SHEER database brings together a large amount of data of various types: interdisciplinary site data from seven independent episodes, research data and those for the project results dissemination process. This concerns mainly shale gas exploitation test sites, processing procedures, results of data interpretation and recommendations. The smart SHEER database harmonizes data from different fields (geophysical, geochemical, geological, technological, etc.), creates and provides access to an advanced database of case studies of environmental impact indicators associated with shale gas exploitation and exploration, which previously did not exist. A unique component of the SHEER database comes from the monitoring activity performed during the project in one active shale gas exploration and exploitation site at Wysin, Poland, which started from the pre-operational phase. The SHEER database is capable of the adoption of new data such as results of other Work Packages and has developed an over-arching structure for higher-level integration.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesActa GeophysicaArticle . 2019 . 2018GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11600-018-0205-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 0visibility views 0 download downloads 5 Powered bydescription Publicationkeyboard_double_arrow_right Article 2017 Germany EC | EPOS IP (676564), EC | VOLCAPSE (646858)F. Maccaferri; N. Richter; T. R. Walter;F. Maccaferri; N. Richter; T. R. Walter;pmc: PMC5653657
pmid: 29062023
Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands. Flank instability and lateral collapse are a potential hazard at volcanic edifices. Here, the authors use numerical simulations to show that at Fogo volcano, lateral collapse can trigger a significant deflection of magma pathways in the crust, demonstrating how volcanic edifices may evolve.
Nature Communication... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC5653657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research 2020 Germany EnglishGFZ Data Services EC | EPOS IP (676564)Shevchenko, A.; Dvigalo, V.; Walter, T.; Mania, R.;Shevchenko, A.; Dvigalo, V.; Walter, T.; Mania, R.;Decades of photogrammetric records at Bezymianny, one of the most active volcanoes on Earth, allow unveiling morphological changes, eruption and intrusion dynamics, erosion, lava and tephra deposition processes. This data publication releases an almost 7-decade long record, retrieved from airborne, satellite, and UAV platforms. The Kamchatkan Institute of Volcanology and Seismology released archives of high-resolution aerial images acquired in 1967-2013. We complemented the aerial datasets with 2017 Pleiades tri-stereo satellite and UAV images. The images were processed using Erdas Imagine and Photomod software. Here we publish nine quality-controlled point clouds in LAS format referenced to the WGS84 (UTM zone 57N). By comparing the point clouds we were able to describe topographic changes and calculate volumetric differences, details of which were further analyzed in Shevchenko et al. (2020, https://doi.org/...). The ~5-decade-long photogrammetric record was achieved by 8 aerial and 1 satellite-UAV datasets. The 8 sets of near nadir aerial photographs acquired in 1967, 1968, 1976, 1977, 1982, 1994, 2006, and 2013 were taken with various photogrammetry cameras dedicated for topographic analysis, specifically the AFA 41-10 camera (1967, 1968, 1976, and 1977; focal length = 99.086 mm), the TAFA 10 camera (1982 and 1994; focal length = 99.120 mm), and the AFA TE-140 camera (2006 and 2013; focal length = 139.536 mm). These analog cameras have all an 18×18 cm frame size. The acquisition flight altitude above the mean surface of Bezymianny varied from 1,500-2,500 m above mean surface elevation, translating up to >5,000 m above sea level. For photogrammetric processing, we used 3-4 consecutive shots that provided a 60-70% forward overlap. The analog photo negatives were digitized by scanning with Epson Perfection V750 Pro scanner in a resolution of 2,400 pixels/inch (approx. pixel (px) size = 0.01 mm). The mean scale within a single photograph depends on the distance to the surface and corresponds on average to 1:10,000-1:20,000. Thus, each px in the scanned image represents about 10-20 cm resolution on the ground. The coordinates of 12 ground control points were derived from a Theo 010B theodolite dataset collected at geodetic benchmarks during a 1977 fieldwork. These benchmarks were established on the slopes of Bezymianny before the 1977 aerial survey and then captured with the AFA 41-10 aerial camera. The most recent was a satellite dataset acquired on 2017-09-09 by the PHR 1B sensor aboard the Pleiades satellite (AIRBUS Defence & Space) operated by the French space agency (CNES). The forward, nadir and backward camera configuration allows revisiting any point on earth and was tasked for the acquisition of Bezymianny to provide a 0.5 m resolution panchromatic imagery dataset. In order to improve the Pleiades data, we complemented them with UAV data collected on 2017-07-29 with DJI Mavic Pro during fieldwork at Bezymianny. This data publication includes a description of the data (in pdf format) and the nine processed and controlled three-dimensional point clouds (in LAS format). The point clouds can be easily interpolated and imported into most open and commercially available geographic information system (GIS) software. Further details on data and data handling are provided in Shevchenko et al. (2020).
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesResearch . 2020Data sources: GFZ German Research Centre for GeosciencesDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::4e350122ad419a0f76fcbd5c31fdba7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 United Kingdom, France, Finland, France, Czech Republic, Germany EnglishHAL CCSD EC | EPOS IP (676564), EC | SERA (730900)Beata Orlecka-Sikora; Stanislaw Lasocki; J. Kocot; Tomasz Szepieniec; Jean Robert Grasso; Alexander Garcia-Aristizabal; Marc Schaming; Pawel Urban; G.M. Jones; I. G. Stimpson; Savka Dineva; Piotr Sałek; Konstantinos Michail Leptokaropoulos; Grzegorz Lizurek; Dorota Olszewska; Jean Schmittbuhl; Grzegorz Kwiatek; Aglaja Blanke; Gilberto Saccorotti; Karolina Chodzińska; Łukasz Rudziński; Izabela Dobrzycka; Grzegorz Mutke; Adam Barański; Aleksandra Pierzyna; Elena Kozlovskaya; Jouni Nevalainen; Jannes Kinscher; Jan Sileny; Mariusz Sterzel; Szymon Cielesta; Tomáš Fischer;AbstractMining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).
Europe PubMed Centra... arrow_drop_down University of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2020Data sources: GFZ German Research Centre for GeosciencesRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesScientific DataArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0429-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 8 Powered bydescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Germany English EC | EPOS IP (676564), EC | DESTRESS (691728)Jan Henninges; Evgeniia Martuganova; Manfred Stiller; Ben Norden; Charlotte M. Krawczyk;We performed so-far-unprecedented deep wireline vertical seismic profiling at the Groß Schönebeck site with the novel method of distributed acoustic sensing (DAS) to gain more detailed information on the structural setting and geometry of the geothermal reservoir, which is comprised of volcanic rocks and sediments of Lower Permian age. During the survey of 4 d only, we acquired data for 61 source positions using hybrid wireline fiber-optic sensor cables deployed in two 4.3 km deep, already existing wells. While most of the recorded data have a very good signal-to-noise ratio, individual sections of the profiles are affected by characteristic coherent noise patterns. This ringing noise results from incomplete coupling of the sensor cable to the borehole wall, and it can be suppressed to a large extent using suitable filtering methods. After conversion to strain rate, the DAS data exhibit a high similarity to the vertical component data of a conventional borehole geophone. We derived accurate time–depth relationships, interval velocities, and corridor stacks from the recorded data. Based on integration with other well data and geological information, we show that the top of a porous and permeable sandstone interval of the geothermal reservoir can be identified by a positive reflection event. Overall, the sequence of reflection events shows a different character for both wells explained by lateral changes in lithology. The top of the volcanic rocks has a somewhat different seismic response in both wells, and no clear reflection event is obvious at the postulated base of the volcanic rocks, so that their thickness cannot be inferred from individual reflection events in the seismic data alone. The DAS method enabled measurements at elevated temperatures up to 150 ∘C over extended periods and led to significant time and cost savings compared to deployment of a conventional borehole geophone string. This wireline approach finally suggests significant implications for observation options in old wells for a variety of purposes.
DepositOnce arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-11869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2017 Germany EC | SHEER (640896), EC | EPOS IP (676564)Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martinez Garzon, P.;GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::0f0e04260c0f0901a6963840412cf38c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu