###### 1 Research products, page 1 of 1

#### Loading

- Publication . Article . Preprint . 2014Open Access EnglishAuthors:Carroll L. Wainwright; Matthew C. Johnson; Hiranya V. Peiris; Anthony Aguirre; Luis Lehner; Steven L. Liebling;Carroll L. Wainwright; Matthew C. Johnson; Hiranya V. Peiris; Anthony Aguirre; Luis Lehner; Steven L. Liebling;Publisher: Institute of Physics Publishing/SISSACountry: ItalyProject: EC | COSMICDAWN (306478), NSF | Collaborative Research: L... (1308621), NSERC , NSF | Collaborative Research: D... (0969827)
The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. We develop and implement an algorithm for accurately computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field. We first simulate the collision spacetime by solving Einstein's equations, starting from nucleation and ending at reheating. Taking advantage of the collision's hyperbolic symmetry, simulations are performed with a 1+1-dimensional fully relativistic code that uses adaptive mesh refinement. We then calculate the comoving curvature perturbation in an open Friedmann-Robertson-Walker universe, which is used to determine the temperature anisotropies of the cosmic microwave background radiation. For a fiducial Lagrangian, the anisotropies are well described by a power law in the cosine of the angular distance from the center of the collision signature. For a given form of the Lagrangian, the resulting observational predictions are inherently statistical due to stochastic elements of the bubble nucleation process. Further uncertainties arise due to our imperfect knowledge about inflationary and pre-recombination physics. We characterize observational predictions by computing the probability distributions over four phenomenological parameters which capture these intrinsic and model uncertainties. This represents the first fully-relativistic set of predictions from an ensemble of scalar field models giving rise to eternal inflation, yielding significant differences from previous non-relativistic approximations. Thus, our results provide a basis for a rigorous confrontation of these theories with cosmological data. Comment: 52 pages, 23 figures. A four page summary of methods and results follows the introduction. Version 2 contains minor clarifications and edits to match the version accepted for publication by JCAP. Version 3 fixes a typo in Eq. 3.10 and a typo in the paragraph after Eq. 5.27. All other text, including results, remains the same

Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.

You have already added works in your ORCID record related to the merged Research product.

###### 1 Research products, page 1 of 1

#### Loading

- Publication . Article . Preprint . 2014Open Access EnglishAuthors:Carroll L. Wainwright; Matthew C. Johnson; Hiranya V. Peiris; Anthony Aguirre; Luis Lehner; Steven L. Liebling;Publisher: Institute of Physics Publishing/SISSACountry: ItalyProject: EC | COSMICDAWN (306478), NSF | Collaborative Research: L... (1308621), NSERC , NSF | Collaborative Research: D... (0969827)
The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. We develop and implement an algorithm for accurately computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field. We first simulate the collision spacetime by solving Einstein's equations, starting from nucleation and ending at reheating. Taking advantage of the collision's hyperbolic symmetry, simulations are performed with a 1+1-dimensional fully relativistic code that uses adaptive mesh refinement. We then calculate the comoving curvature perturbation in an open Friedmann-Robertson-Walker universe, which is used to determine the temperature anisotropies of the cosmic microwave background radiation. For a fiducial Lagrangian, the anisotropies are well described by a power law in the cosine of the angular distance from the center of the collision signature. For a given form of the Lagrangian, the resulting observational predictions are inherently statistical due to stochastic elements of the bubble nucleation process. Further uncertainties arise due to our imperfect knowledge about inflationary and pre-recombination physics. We characterize observational predictions by computing the probability distributions over four phenomenological parameters which capture these intrinsic and model uncertainties. This represents the first fully-relativistic set of predictions from an ensemble of scalar field models giving rise to eternal inflation, yielding significant differences from previous non-relativistic approximations. Thus, our results provide a basis for a rigorous confrontation of these theories with cosmological data. Comment: 52 pages, 23 figures. A four page summary of methods and results follows the introduction. Version 2 contains minor clarifications and edits to match the version accepted for publication by JCAP. Version 3 fixes a typo in Eq. 3.10 and a typo in the paragraph after Eq. 5.27. All other text, including results, remains the same

Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.

You have already added works in your ORCID record related to the merged Research product.