Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Conference object 2019 Italy English EC | EPOS IP (676564)Fernando Monterroso (1; 2); Manuela Bonano (2; 3); Claudio de Luca (2); De Novellis Vincenzo (2); Riccardo Lanari (2); Michelle Manunta (2); Mariarosaria Manzo (2); Giovanni Onorato (2); Emanuela Valerio (2); Ivana Zinno (2); Francesco Casu (2);During the last decades, the availability of Synthetic Aperture Radar (SAR) satellite missions, such as the ERS-1/2 and ENVISAT ones operating at C-band who have worked since 1992 to 2011, as well as the X-band COSMOSkyMed and TerraSAR-X constellations, up to the brand new Sentinel-1 mission, have strongly contributed to SAR data diffusion and popularity in the generation of different studies at different scales and in different research fields. One of the most popular SAR technique is the one referred to as Differential SAR Interferometry (DInSAR), which allows measuring with centimeter accuracy the Earth's surface deformation entity related to both natural and man-made hazards. Nowadays, with the increasing of SAR data availability provided by Sentinel-1 constellation of Copernicus European Program, which is composed by two twin satellites operating in C-band since 2014 and 2016, with a repeat pass of 6 days and with a global (i.e. worldwide) data acquisition policy, the SAR EO scenario is becoming more and more operational, thus mainly providing support for natural hazards monitoring. This allows, in theory, and disposing of sufficient computing power, the EO community to monitor, for instance, the deformation of every volcano or to obtain co-seismic displacement maps in a short time frame and anywhere in the world. Accordingly, in this work, we present a fully automatic and fast processing service for the generation of co-seismic displacement maps by using Sentinel-1 data. The implemented system is completely unsupervised and is triggered by the all significant (i.e. larger than a defined magnitude) seismic event registered by the online catalog as those provided by the United States Geological Survey (USGS) and the National Institute of Geophysics and Volcanology of Italy (INGV). The service has been specifically designed to operate for Civil Protection purposes. The generated DInSAR measurements are made available to the geoscience community through the EPOS Research Infrastructure and they will contribute to the creation of a global database of co-seismic displacement maps. Finally, it is worth noting that the developed system relies on widely common IT methods and protocols and is not specifically tied to a defined computing architecture, thus implying its portability, in view also of the European Commission Data and Information Access Services (DIAS) where satellite data (mainly Sentinel) and processing facilities are co-located to reduce the data transfer time during their processing.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::c840a907e611a1f646f510217b2759bd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 Netherlands EnglishElsevier EC | ENVRI PLUS (654182), EC | ENVRI-FAIR (824068), EC | EPOS IP (676564)Paul Martin; Laurent Remy; Maria Theodoridou; Keith G. Jeffery; Zhiming Zhao;Virtual Research Environments (VREs), also known as science gateways or virtual laboratories, assist researchers in data science by integrating tools for data discovery, data retrieval, workflow management and researcher collaboration, often coupled with a specific computing infrastructure. Recently, the push for better open data science has led to the creation of a variety of dedicated research infrastructures (RIs) that gather data and provide services to different research communities, all of which can be used independently of any specific VRE. There is therefore a need for generic VREs that can be coupled with the resources of many different RIs simultaneously, easily customised to the needs of specific communities. The resource metadata produced by these RIs rarely all adhere to any one standard or vocabulary however, making it difficult to search and discover resources independently of their providers without some translation into a common framework. Cross-RI search can be expedited by using mapping services that harvest RI-published metadata to build unified resource catalogues, but the development and operation of such services pose a number of challenges. In this paper, we discuss some of these challenges and look specifically at the VRE4EIC Metadata Portal, which uses X3ML mappings to build a single catalogue for describing data products and other resources provided by multiple RIs. The Metadata Portal was built in accordance to the e-VRE Reference Architecture, a microservice-based architecture for generic modular VREs, and uses the CERIF standard to structure its catalogued metadata. We consider the extent to which it addresses the challenges of cross-RI search, particularly in the environmental and earth science domain, and how it can be further augmented, for example to take advantage of linked vocabularies to provide more intelligent semantic search across multiple domains of discourse.
Future Generation Co... arrow_drop_down Future Generation Computer Systems; NARCISArticle . 2019Future Generation Computer SystemsArticle . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.05.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Average impulse Average Powered by BIP!
visibility 151visibility views 151 download downloads 150 Powered bydescription Publicationkeyboard_double_arrow_right Article 2020 EC | SERA (730900), EC | EPOS IP (676564)Beata Orlecka-Sikora; Stanislaw Lasocki; J. Kocot; Tomasz Szepieniec; Jean Robert Grasso; Alexander Garcia-Aristizabal; Marc Schaming; Pawel Urban; G.M. Jones; I. G. Stimpson; Savka Dineva; Piotr Sałek; Konstantinos Michail Leptokaropoulos; Grzegorz Lizurek; Dorota Olszewska; Jean Schmittbuhl; Grzegorz Kwiatek; Aglaja Blanke; Gilberto Saccorotti; Karolina Chodzińska; Łukasz Rudziński; Izabela Dobrzycka; Grzegorz Mutke; Adam Barański; Aleksandra Pierzyna; Elena Kozlovskaya; Jouni Nevalainen; Jannes Kinscher; Jan Sileny; Mariusz Sterzel; Szymon Cielesta; Tomáš Fischer;Mining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0457-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2019 United States, France EnglishHAL CCSD EC | SERA (730900), ANR | HYDROSEIS (ANR-13-JS06-0004), EC | EPOS IP (676564)Louis De Barros; Frédéric Cappa; Yves Guglielmi; Laure Duboeuf; Jean-Robert Grasso;AbstractThe ability to predict the magnitude of an earthquake caused by deep fluid injections is an important factor for assessing the safety of the reservoir storage and the seismic hazard. Here, we propose a new approach to evaluate the seismic energy released during fluid injection by integrating injection parameters, induced aseismic deformation, and the distance of earthquake sources from injection. We use data from ten injection experiments performed at a decameter scale into fault zones in limestone and shale formations. We observe that the seismic energy and the hydraulic energy similarly depend on the injected fluid volume (V), as they both scale as V3/2. They show, however, a large discrepancy, partly related to a large aseismic deformation. Therefore, to accurately predict the released seismic energy, aseismic deformation should be considered in the budget through the residual deformation measured at the injection. Alternatively, the minimal hypocentral distance from injection points and the critical fluid pressure for fault reactivation can be used for a better prediction of the seismic moment in the total compilation of earthquakes observed during these experiments. Complementary to the prediction based only on the injected fluid volume, our approach opens the possibility of using alternative monitoring parameters to improve traffic-light protocols for induced earthquakes and the regulation of operational injection activities.
Europe PubMed Centra... arrow_drop_down Scientific Reports; Hyper Article en LigneOther literature type . Article . 2019eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-41306-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2019 Germany EC | EPOS IP (676564)Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;doi: 10.1093/gji/ggz178
Geophysical Journal ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gji/ggz178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Conference object 2019 Italy English EC | EPOS IP (676564)F. Casu1; M. Bonano1; 2; R. Castaldo1; C. De Luca1; V. De Novellis1; R. Lanari1; M. Manunta1; M. Manzo1; G. Onorato1; S. Pepe1; G. Solaro1; P. Tizzani1; E. Valerio3; I. Zinno1;We present an unsupervised and automatic system for volcano deformation monitoring via the Copernicus Sentinel-1 data. The system relies on the Parallel Small BAseline Subset (P-SBAS) approach, permitting us to generate updated displacement time series at every new Sentinel-1 acquisition over a selected area of interest in a fast and accurate way. The service is currently operative to monitor the main active Italian volcanoes in the framework of cooperation with the Italian Department of Civil Protection. The system is potentially extendable to every area on the Earth, thus making it suitable for surface displacement monitoring of a large variety of phenomena. Finally, the obtained results are made available to the scientific community through the EPOS Research Infrastructure.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::a885e5aa0b4b162bc109444852581665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2019 EC | EPOS IP (676564)Marzán, Ignacio; Martí, David; Torné, Montserrat; Ruiz Fernández, Mario; Carbonell, Ramón;https://doi.org/10.2... arrow_drop_down https://doi.org/10.20350/digit...Other literature type . 2019Data sources: European Union Open Data PortalDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::5706a84e488d0c17fb4914f658f19973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 Italy EnglishPergamon,, Oxford , Regno Unito EC | EPOS IP (676564)Corti; G.[ 1 ]; Nencini; R.[ 2 ]; Skytta; P.[ 3 ];Abstract We use new analogue modelling experiments to analyse the development of pull-apart basins in an upper crust characterised by the presence of pre-existing discrete fabrics. As in previous models, lateral movement of rigid basal plates induced strike-slip deformation of a sand-pack. Local extension allowing the formation of a pull-apart basin was produced by the step-over geometry of the master faults; in this area, a basal silicone layer was introduced to distribute deformation and reproduced a weaker crust in the basin. Conditions of neutral, overlapping and underlapping interacting master faults were reproduced. The model upper crust, modelled by a sand mixture, was characterised by the presence of pre-existing structures; the orientation of these inherited heterogeneities was systematically varied in different experiments. Model results indicate that, depending on their orientation with respect to the strike-slip displacement, pre-existing structures can be reactivated both within and at the margins of the pull-apart basins. Inside the basin, reactivation occurs when the pre-existing structures are orthogonal or sub-orthogonal to the strike-slip displacement; in this case, the pre-existing fabrics delay the development and linkage of cross-basin faults and increase the complexity of the deformation pattern giving rise to a new set of faults characterised by an atypical trend. Pre-existing fabrics oblique to the local extension direction may be partly reactivated in the central part of the basin as segments of cross-basin faults. At the margins of the pull-apart, reactivation occurs if the fabrics spatially coincide with the lateral boundaries of the silicone layer. In these conditions, reactivation allows a faster development of the border faults, which are less segmented than in the homogenous models; this also results in a more regular final geometry of the pull-apart.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsg.2019.103937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Conference object 2020 Spain EC | EPOS IP (676564)DeFelipe, Irene; Alcalde, Juan; Fernandez-Turiel, J. L.; Diaz, J.; Geyer, Adelina; Molina Fernández, Cecilia; Bernal, Isabel; Fernández, José; Carbonell, Ramón;handle: 10261/217165
The European Plate Observation System (EPOS, https://www.epos-ip.org/) is an e-infrastructure aimed at facilitating and promoting the integrated use of data, data products, services and facilities from internationally distributed research infrastructures for Solid Earth Science in Europe. This e-infrastructure is greatly committed to tackle viable solutions for Solid Earth challenges. It is a long-term plan that integrates research infrastructures of different EU countries into a single inter-operable platform. Data, data products, software and services are facilitated through a variety of different thematic core services (e.g., Seismology, Satellite data, Volcano Observations, Multi-Scale Laboratories, etc.). The Spanish EPOS node, coordinated by CSIC, provides data, data products, software and services to EPOS with the help of the repository DIGITAL.CSIC. In particular, geochemical data, satellite observations, control source seismic data as well as access to other data services. The CSIC has adopted the open data mandate and supports that data archives follow the FAIR principles of data management: Findable, Accessible, Interoperable and Reusable. Data are broadly accessible to reuse for other researchers, industry, teaching, training and for the general public. Following these principles, the Institute of Earth Sciences Jaume Almera is updating and enlarging its database (https://digital.csic.es/handle/10261/101879). The repository includes geophysical data acquired in the Iberian Peninsula since the 90’s, both on and offshore. This dataset comprises deep seismic studies of the structure of the crust and uppermost mantle in different geological settings, obtained through projects funded by public calls as well as data resulting from industry funded research projects. This dataset contains, for example, data addressing the characterization of the shallow subsurface for the development of CO2 and radioactive waste geologic storage sites, and data to assess geologic hazards in the neighborhood of faults. The latter aimed to characterize the seismogenic behavior of active faults in strike-slip tectonic contexts. The repository provides access to data that are relevant to assess sustainable and secure exploration and exploitation of the subsurface, a key societal challenge. This work is a contribution of Project EPOS Implementation Phase (EPOS IP), funded by the European Commission (Grant Agreement no: 676564-EPOS IP, Call H2020-INFRADEV-2014-2015/H2020-INFRADEV-1-2015-1). Resumen del trabajo presentado en el 19th International Symposium on Deep Seismic Profiling of the Continents and their Margins (SEISMIX 2020), celebrado del 15 al 19 de marzo de 2020 en Australia Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICConference object . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/217165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 9visibility views 9 download downloads 58 Powered bydescription Publicationkeyboard_double_arrow_right Article , Preprint 2021Embargo end date: 01 Jan 2022arXiv EC | EPOS IP (676564), EC | VOLTAIC (705619)Jens von der Linden; Clare Kimblin; Ian McKenna; Skyler Bagley; Hsiao-Chi Li; Ryan W. Houim; C. Kueny; Allen Kuhl; D.P. Grote; Mark Converse; Caron E. J. Vossen; Sönke Stern; Corrado Cimarelli; Jason Sears;Volcanic jet flows in explosive eruptions emit radio frequency signatures, indicative of their fluid dynamic and electrostatic conditions. The emissions originate from sparks supported by an electric field built up by the ejected charged volcanic particles. When shock-defined, low-pressure regions confine the sparks, the signatures may be limited to high-frequency content corresponding to the early components of the avalanche-streamer-leader hierarchy. Here, we image sparks and a standing shock together in a transient supersonic jet of micro-diamonds entrained in argon. Fluid dynamic and kinetic simulations of the experiment demonstrate that the observed sparks originate upstream of the standing shock. The sparks are initiated in the rarefaction region, and cut off at the shock, which would limit their radio frequency emissions to a tell-tale high-frequency regime. We show that sparks transmit an impression of the explosive flow, and open the way for novel instrumentation to diagnose currently inaccessible explosive phenomena. Comment: 9 pages, 6 figures
Communications Earth... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2201.08635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
Loading
description Publicationkeyboard_double_arrow_right Conference object 2019 Italy English EC | EPOS IP (676564)Fernando Monterroso (1; 2); Manuela Bonano (2; 3); Claudio de Luca (2); De Novellis Vincenzo (2); Riccardo Lanari (2); Michelle Manunta (2); Mariarosaria Manzo (2); Giovanni Onorato (2); Emanuela Valerio (2); Ivana Zinno (2); Francesco Casu (2);During the last decades, the availability of Synthetic Aperture Radar (SAR) satellite missions, such as the ERS-1/2 and ENVISAT ones operating at C-band who have worked since 1992 to 2011, as well as the X-band COSMOSkyMed and TerraSAR-X constellations, up to the brand new Sentinel-1 mission, have strongly contributed to SAR data diffusion and popularity in the generation of different studies at different scales and in different research fields. One of the most popular SAR technique is the one referred to as Differential SAR Interferometry (DInSAR), which allows measuring with centimeter accuracy the Earth's surface deformation entity related to both natural and man-made hazards. Nowadays, with the increasing of SAR data availability provided by Sentinel-1 constellation of Copernicus European Program, which is composed by two twin satellites operating in C-band since 2014 and 2016, with a repeat pass of 6 days and with a global (i.e. worldwide) data acquisition policy, the SAR EO scenario is becoming more and more operational, thus mainly providing support for natural hazards monitoring. This allows, in theory, and disposing of sufficient computing power, the EO community to monitor, for instance, the deformation of every volcano or to obtain co-seismic displacement maps in a short time frame and anywhere in the world. Accordingly, in this work, we present a fully automatic and fast processing service for the generation of co-seismic displacement maps by using Sentinel-1 data. The implemented system is completely unsupervised and is triggered by the all significant (i.e. larger than a defined magnitude) seismic event registered by the online catalog as those provided by the United States Geological Survey (USGS) and the National Institute of Geophysics and Volcanology of Italy (INGV). The service has been specifically designed to operate for Civil Protection purposes. The generated DInSAR measurements are made available to the geoscience community through the EPOS Research Infrastructure and they will contribute to the creation of a global database of co-seismic displacement maps. Finally, it is worth noting that the developed system relies on widely common IT methods and protocols and is not specifically tied to a defined computing architecture, thus implying its portability, in view also of the European Commission Data and Information Access Services (DIAS) where satellite data (mainly Sentinel) and processing facilities are co-located to reduce the data transfer time during their processing.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::c840a907e611a1f646f510217b2759bd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 Netherlands EnglishElsevier EC | ENVRI PLUS (654182), EC | ENVRI-FAIR (824068), EC | EPOS IP (676564)Paul Martin; Laurent Remy; Maria Theodoridou; Keith G. Jeffery; Zhiming Zhao;Virtual Research Environments (VREs), also known as science gateways or virtual laboratories, assist researchers in data science by integrating tools for data discovery, data retrieval, workflow management and researcher collaboration, often coupled with a specific computing infrastructure. Recently, the push for better open data science has led to the creation of a variety of dedicated research infrastructures (RIs) that gather data and provide services to different research communities, all of which can be used independently of any specific VRE. There is therefore a need for generic VREs that can be coupled with the resources of many different RIs simultaneously, easily customised to the needs of specific communities. The resource metadata produced by these RIs rarely all adhere to any one standard or vocabulary however, making it difficult to search and discover resources independently of their providers without some translation into a common framework. Cross-RI search can be expedited by using mapping services that harvest RI-published metadata to build unified resource catalogues, but the development and operation of such services pose a number of challenges. In this paper, we discuss some of these challenges and look specifically at the VRE4EIC Metadata Portal, which uses X3ML mappings to build a single catalogue for describing data products and other resources provided by multiple RIs. The Metadata Portal was built in accordance to the e-VRE Reference Architecture, a microservice-based architecture for generic modular VREs, and uses the CERIF standard to structure its catalogued metadata. We consider the extent to which it addresses the challenges of cross-RI search, particularly in the environmental and earth science domain, and how it can be further augmented, for example to take advantage of linked vocabularies to provide more intelligent semantic search across multiple domains of discourse.
Future Generation Co... arrow_drop_down Future Generation Computer Systems; NARCISArticle . 2019Future Generation Computer SystemsArticle . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.future.2019.05.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Average impulse Average Powered by BIP!
visibility 151visibility views 151 download downloads 150 Powered bydescription Publicationkeyboard_double_arrow_right Article 2020 EC | SERA (730900), EC | EPOS IP (676564)Beata Orlecka-Sikora; Stanislaw Lasocki; J. Kocot; Tomasz Szepieniec; Jean Robert Grasso; Alexander Garcia-Aristizabal; Marc Schaming; Pawel Urban; G.M. Jones; I. G. Stimpson; Savka Dineva; Piotr Sałek; Konstantinos Michail Leptokaropoulos; Grzegorz Lizurek; Dorota Olszewska; Jean Schmittbuhl; Grzegorz Kwiatek; Aglaja Blanke; Gilberto Saccorotti; Karolina Chodzińska; Łukasz Rudziński; Izabela Dobrzycka; Grzegorz Mutke; Adam Barański; Aleksandra Pierzyna; Elena Kozlovskaya; Jouni Nevalainen; Jannes Kinscher; Jan Sileny; Mariusz Sterzel; Szymon Cielesta; Tomáš Fischer;Mining, water-reservoir impoundment, underground gas storage, geothermal energy exploitation and hydrocarbon extraction have the potential to cause rock deformation and earthquakes, which may be hazardous for people, infrastructure and the environment. Restricted access to data constitutes a barrier to assessing and mitigating the associated hazards. Thematic Core Service Anthropogenic Hazards (TCS AH) of the European Plate Observing System (EPOS) provides a novel e-research infrastructure. The core of this infrastructure, the IS-EPOS Platform (tcs.ah-epos.eu) connected to international data storage nodes offers open access to large grouped datasets (here termed episodes), comprising geoscientific and associated data from industrial activity along with a large set of embedded applications for their efficient data processing, analysis and visualization. The novel team-working features of the IS-EPOS Platform facilitate collaborative and interdisciplinary scientific research, public understanding of science, citizen science applications, knowledge dissemination, data-informed policy-making and the teaching of anthropogenic hazards related to georesource exploitation. TCS AH is one of 10 thematic core services forming EPOS, a solid earth science European Research Infrastructure Consortium (ERIC) (www.epos-ip.org).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0457-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2019 United States, France EnglishHAL CCSD EC | SERA (730900), ANR | HYDROSEIS (ANR-13-JS06-0004), EC | EPOS IP (676564)Louis De Barros; Frédéric Cappa; Yves Guglielmi; Laure Duboeuf; Jean-Robert Grasso;AbstractThe ability to predict the magnitude of an earthquake caused by deep fluid injections is an important factor for assessing the safety of the reservoir storage and the seismic hazard. Here, we propose a new approach to evaluate the seismic energy released during fluid injection by integrating injection parameters, induced aseismic deformation, and the distance of earthquake sources from injection. We use data from ten injection experiments performed at a decameter scale into fault zones in limestone and shale formations. We observe that the seismic energy and the hydraulic energy similarly depend on the injected fluid volume (V), as they both scale as V3/2. They show, however, a large discrepancy, partly related to a large aseismic deformation. Therefore, to accurately predict the released seismic energy, aseismic deformation should be considered in the budget through the residual deformation measured at the injection. Alternatively, the minimal hypocentral distance from injection points and the critical fluid pressure for fault reactivation can be used for a better prediction of the seismic moment in the total compilation of earthquakes observed during these experiments. Complementary to the prediction based only on the injected fluid volume, our approach opens the possibility of using alternative monitoring parameters to improve traffic-light protocols for induced earthquakes and the regulation of operational injection activities.
Europe PubMed Centra... arrow_drop_down Scientific Reports; Hyper Article en LigneOther literature type . Article . 2019eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-41306-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2019 Germany EC | EPOS IP (676564)Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;Dino Bindi; Riccardo Zaccarelli; Angelo Strollo; Domenico Di Giacomo;doi: 10.1093/gji/ggz178
Geophysical Journal ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/gji/ggz178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Conference object 2019 Italy English EC | EPOS IP (676564)F. Casu1; M. Bonano1; 2; R. Castaldo1; C. De Luca1; V. De Novellis1; R. Lanari1; M. Manunta1; M. Manzo1; G. Onorato1; S. Pepe1; G. Solaro1; P. Tizzani1; E. Valerio3; I. Zinno1;We present an unsupervised and automatic system for volcano deformation monitoring via the Copernicus Sentinel-1 data. The system relies on the Parallel Small BAseline Subset (P-SBAS) approach, permitting us to generate updated displacement time series at every new Sentinel-1 acquisition over a selected area of interest in a fast and accurate way. The service is currently operative to monitor the main active Italian volcanoes in the framework of cooperation with the Italian Department of Civil Protection. The system is potentially extendable to every area on the Earth, thus making it suitable for surface displacement monitoring of a large variety of phenomena. Finally, the obtained results are made available to the scientific community through the EPOS Research Infrastructure.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::a885e5aa0b4b162bc109444852581665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2019 EC | EPOS IP (676564)Marzán, Ignacio; Martí, David; Torné, Montserrat; Ruiz Fernández, Mario; Carbonell, Ramón;https://doi.org/10.2... arrow_drop_down https://doi.org/10.20350/digit...Other literature type . 2019Data sources: European Union Open Data PortalDo the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::5706a84e488d0c17fb4914f658f19973&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 Italy EnglishPergamon,, Oxford , Regno Unito EC | EPOS IP (676564)Corti; G.[ 1 ]; Nencini; R.[ 2 ]; Skytta; P.[ 3 ];Abstract We use new analogue modelling experiments to analyse the development of pull-apart basins in an upper crust characterised by the presence of pre-existing discrete fabrics. As in previous models, lateral movement of rigid basal plates induced strike-slip deformation of a sand-pack. Local extension allowing the formation of a pull-apart basin was produced by the step-over geometry of the master faults; in this area, a basal silicone layer was introduced to distribute deformation and reproduced a weaker crust in the basin. Conditions of neutral, overlapping and underlapping interacting master faults were reproduced. The model upper crust, modelled by a sand mixture, was characterised by the presence of pre-existing structures; the orientation of these inherited heterogeneities was systematically varied in different experiments. Model results indicate that, depending on their orientation with respect to the strike-slip displacement, pre-existing structures can be reactivated both within and at the margins of the pull-apart basins. Inside the basin, reactivation occurs when the pre-existing structures are orthogonal or sub-orthogonal to the strike-slip displacement; in this case, the pre-existing fabrics delay the development and linkage of cross-basin faults and increase the complexity of the deformation pattern giving rise to a new set of faults characterised by an atypical trend. Pre-existing fabrics oblique to the local extension direction may be partly reactivated in the central part of the basin as segments of cross-basin faults. At the margins of the pull-apart, reactivation occurs if the fabrics spatially coincide with the lateral boundaries of the silicone layer. In these conditions, reactivation allows a faster development of the border faults, which are less segmented than in the homogenous models; this also results in a more regular final geometry of the pull-apart.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsg.2019.103937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Conference object 2020 Spain EC | EPOS IP (676564)DeFelipe, Irene; Alcalde, Juan; Fernandez-Turiel, J. L.; Diaz, J.; Geyer, Adelina; Molina Fernández, Cecilia; Bernal, Isabel; Fernández, José; Carbonell, Ramón;handle: 10261/217165
The European Plate Observation System (EPOS, https://www.epos-ip.org/) is an e-infrastructure aimed at facilitating and promoting the integrated use of data, data products, services and facilities from internationally distributed research infrastructures for Solid Earth Science in Europe. This e-infrastructure is greatly committed to tackle viable solutions for Solid Earth challenges. It is a long-term plan that integrates research infrastructures of different EU countries into a single inter-operable platform. Data, data products, software and services are facilitated through a variety of different thematic core services (e.g., Seismology, Satellite data, Volcano Observations, Multi-Scale Laboratories, etc.). The Spanish EPOS node, coordinated by CSIC, provides data, data products, software and services to EPOS with the help of the repository DIGITAL.CSIC. In particular, geochemical data, satellite observations, control source seismic data as well as access to other data services. The CSIC has adopted the open data mandate and supports that data archives follow the FAIR principles of data management: Findable, Accessible, Interoperable and Reusable. Data are broadly accessible to reuse for other researchers, industry, teaching, training and for the general public. Following these principles, the Institute of Earth Sciences Jaume Almera is updating and enlarging its database (https://digital.csic.es/handle/10261/101879). The repository includes geophysical data acquired in the Iberian Peninsula since the 90’s, both on and offshore. This dataset comprises deep seismic studies of the structure of the crust and uppermost mantle in different geological settings, obtained through projects funded by public calls as well as data resulting from industry funded research projects. This dataset contains, for example, data addressing the characterization of the shallow subsurface for the development of CO2 and radioactive waste geologic storage sites, and data to assess geologic hazards in the neighborhood of faults. The latter aimed to characterize the seismogenic behavior of active faults in strike-slip tectonic contexts. The repository provides access to data that are relevant to assess sustainable and secure exploration and exploitation of the subsurface, a key societal challenge. This work is a contribution of Project EPOS Implementation Phase (EPOS IP), funded by the European Commission (Grant Agreement no: 676564-EPOS IP, Call H2020-INFRADEV-2014-2015/H2020-INFRADEV-1-2015-1). Resumen del trabajo presentado en el 19th International Symposium on Deep Seismic Profiling of the Continents and their Margins (SEISMIX 2020), celebrado del 15 al 19 de marzo de 2020 en Australia Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICConference object . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10261/217165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 9visibility views 9 download downloads 58 Powered bydescription Publicationkeyboard_double_arrow_right Article , Preprint 2021Embargo end date: 01 Jan 2022arXiv EC | EPOS IP (676564), EC | VOLTAIC (705619)Jens von der Linden; Clare Kimblin; Ian McKenna; Skyler Bagley; Hsiao-Chi Li; Ryan W. Houim; C. Kueny; Allen Kuhl; D.P. Grote; Mark Converse; Caron E. J. Vossen; Sönke Stern; Corrado Cimarelli; Jason Sears;Volcanic jet flows in explosive eruptions emit radio frequency signatures, indicative of their fluid dynamic and electrostatic conditions. The emissions originate from sparks supported by an electric field built up by the ejected charged volcanic particles. When shock-defined, low-pressure regions confine the sparks, the signatures may be limited to high-frequency content corresponding to the early components of the avalanche-streamer-leader hierarchy. Here, we image sparks and a standing shock together in a transient supersonic jet of micro-diamonds entrained in argon. Fluid dynamic and kinetic simulations of the experiment demonstrate that the observed sparks originate upstream of the standing shock. The sparks are initiated in the rarefaction region, and cut off at the shock, which would limit their radio frequency emissions to a tell-tale high-frequency regime. We show that sparks transmit an impression of the explosive flow, and open the way for novel instrumentation to diagnose currently inaccessible explosive phenomena. Comment: 9 pages, 6 figures
Communications Earth... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2201.08635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!