Abstract. Ocean color remote sensing offers two decades-long time series of information on phytoplankton abundance. However, determining the structure of the phytoplankton community from this signal is not straightforward, and many uncertainties remain to be evaluated, despite multiple intercomparison efforts of the different available algorithms. Here, we use remote sensing and machine learning to infer the abundance of seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. Our dataset is to our knowledge the most comprehensive and complete, available to describe phytoplankton community structure at a global scale using a molecular marker that defines relative abundances of all phytoplankton groups simultaneously. The methodology shows satisfying performances to provide robust estimates of phytoplankton groups using satellite data, with few limitations regarding the global generalization of the method. Furthermore, this new satellite-based methodology allows a valuable global intercomparison with the pigment-based approach used in in-situ and satellite data to identify phytoplankton groups. Nevertheless, these datasets show different, yet coherent information on the phytoplankton, valuable for the understanding of community structure. This makes remote sensing observations excellent tools to collect Essential Biodiversity Variables and provide a foundation for developing marine biodiversity forecasts.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-1421&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-1421&type=result"></script>');
-->
</script>
Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_001::3ec066ad05d98ba023be2627aa6f80e4&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_001::3ec066ad05d98ba023be2627aa6f80e4&type=result"></script>');
-->
</script>
ABSTRACT Viruses strongly influence the ecology and evolution of their eukaryotic hosts in the marine environment, but little is known about their diversity and distribution. Prasinoviruses infect an abundant and widespread class of phytoplankton, the Mamiellophyceae, and thereby exert a specific and important role in microbial ecosystems. However, molecular tools to specifically identify this viral genus in environmental samples are still lacking. We developed two primer sets, designed for use with polymerase chain reactions and 454 pyrosequencing technologies, to target two conserved genes, encoding the DNA polymerase (PolB gene) and the major capsid protein (MCP gene). While only one copy of the PolB gene is present in Prasinovirus genomes, there are at least seven paralogs for MCP, the copy we named number 6 being shared with other eukaryotic alga-infecting viruses. Primer sets for PolB and MCP6 were thus designed and tested on 6 samples from the Tara Oceans project. The results suggest that the MCP6 amplicons show greater richness but that PolB gave a wider coverage of Prasinovirus diversity. As a consequence, we recommend use of the PolB primer set, which will certainly reveal exciting new insights about the diversity and distribution of prasinoviruses at the community scale.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/aem.00123-14&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 31 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/aem.00123-14&type=result"></script>');
-->
</script>
Accompanying material, text, data and figures for the article de Vargas et al., 'Eukaryotic plankton diversity in the sunlit ocean', Science 348, 1261605 (2015), doi: 10.1126/science.1261605
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2659::bad9afc425e9e1445bf0b64ce67c5ecd&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2659::bad9afc425e9e1445bf0b64ce67c5ecd&type=result"></script>');
-->
</script>
Les dinoflagellés forment un groupe complexe de protistes avec une grande diversité de morphologies, physiologies, et cycles de vies qui leur confèrent une forte capacité d'adaptation à l'ensemble des milieux (marins et dulçaquicoles) et habitats (pélagiques et benthiques) aquatiques rendant difficile l¿étude de leur diversité et de leur écologie. L'objectif de cette thèse a été la recherche de patrons globaux de biodiversité et de structuration des communautés de dinoflagellés pélagiques marins à l'échelle planétaire. Un protocole d'échantillonnage morphogénétique, couvrant la totalité de leur spectre de taille et une partie importante de leurs variabilités spatio-temporelles, a été développé (Tara-Oceans). Divers outils d'acquisition automatique à haut débit des données ont été testés. La diversité, l'abondance relative et la distribution géographique des espèces du genre Neoceratium ont été évaluées en mer Méditerranée par FlowCAM. Une étude de la structuration de la biodiversité a été réalisée par metabarcoding de l¿ADNr 18S (fragment V9). La construction d'une base de séquences ADNr de référence (DinR2) a permis l¿assignation taxonomique des metabarcodes environnementaux. L¿approche par metabarcode révèle une diversité remarquable et insoupçonnée des pico-dinoflagellés (<5µm) et que, indépendamment de l'écosystème étudié et de la période d'échantillonnage, l¿abondance des différents ordres dépend essentiellement de la taille (pico-, nano-, micro-, et meso-plancton). La structuration des communautés de dinoflagellés de différentes fractions de tailles de la zone photique a été confrontée à certains facteurs environnementaux ouvrant des pistes de recherche prometteuses Dinoflagellates form a complex group of protists with a variety of morphologies, physiologies, and life cycles that give them a strong adaptation to all aquatic environments (marine and freshwater) and habitats (pelagic and benthic) making difficult to study their diversity and ecology. The objective of this thesis was the search for global biodiversity patterns and community structure of marine pelagic dinoflagellates across the world?s oceans. A morphogenetic sampling protocol, covering the entire spectrum of their size and an important part of their spatio-temporal variability, was developed (Tara-Oceans). Various tools for an automatic acquisition broadband data were tested. Diversity, relative abundance and geographical distribution of the genus Neoceratium were evaluated by FlowCAM in Mediterranean Sea. A study of the structure of biodiversity was conducted by metabarcoding with 18S rDNA (V9 fragment). Building a base of rDNA reference sequences (DinR2) allowed the taxonomic assignment of environmental metabarcodes. The metabarcode approach reveals a remarkable and unexpected diversity of pico-dinoflagellates (<5?m) and, regardless of the studied ecosystem and the sampling period, that abundance of different levels mainly depends to the size fractions (pico-, nano-, micro- and meso- plankton). Structuring of dinoflagellates communities in different size fractions of the photic zone was facing to some environmental factors and opens promising avenues for research
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______165::b9bc0ac9216208ab160294e956a36068&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______165::b9bc0ac9216208ab160294e956a36068&type=result"></script>');
-->
</script>
Abstract. The goal of the Arabian Sea section of the TARA oceans expedition was to study large particulate matter (LPM > 100 μm) distributions and possible impact of associated midwater biological processes on vertical carbon export through the oxygen minimum zone (OMZ) of this region. We propose that observed spatial patterns in LPM distribution resulted from the timing and location of surface phytoplankton bloom, lateral transport, microbial processes in the core of the OMZ, and enhanced biological processes mediated by bacteria and zooplankton at the lower oxycline. Indeed, satellite-derived net primary production maps showed that the northern stations of the transect were under the influence of a previous major bloom event while the most southern stations were in a more oligotrophic situation. Lagrangian simulations of particle transport showed that deep particles of the northern stations could originate from the surface bloom while the southern stations could be considered as driven by 1-D vertical processes. In the first 200 m of the OMZ core, minima in nitrate concentrations and the intermediate nepheloid layer (INL) coincided with high concentrations of 100 μm < LPM < 200 μm. These particles could correspond to colonies of bacteria or detritus produced by anaerobic microbial activity. However, the calculated carbon flux through this layer was not affected. Vertical profiles of carbon flux indicate low flux attenuation in the OMZ, with a Martin model b exponent value of 0.22. At three stations, the lower oxycline was associated to a deep nepheloid layer, an increase of calculated carbon flux and an increase in mesozooplankton abundance. Enhanced bacterial activity and zooplankton feeding in the deep OMZ is proposed as a mechanism for the observed deep particle aggregation. Estimated lower flux attenuation in the upper OMZ and re-aggregation at the lower oxycline suggest that OMZ may be regions of enhanced carbon flux to the deep sea relative to non OMZ regions.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4541-2014&type=result"></script>');
-->
</script>
gold |
citations | 51 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4541-2014&type=result"></script>');
-->
</script>
The role of the Arctic Ocean ecosystem in climate regulation may depend on the responses of marine microorganisms to environmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs catalogue comprising 526 species. A total of 441 MAGs belonged to species that have not previously been reported and 299 genomes showed an exclusively polar distribution. Most Arctic MAGs have large genomes and the potential for fast generation times, both of which may enable adaptation to a copiotrophic lifestyle in nutrient-rich waters. We identified 38 habitat generalists and 111 specialists in the Arctic Ocean. We also found a general prevalence of 14 mixotrophs, while chemolithoautotrophs were mostly present in the mesopelagic layer during spring and autumn. We revealed 62 MAGs classified as key Arctic species, found only in the Arctic Ocean, showing the highest gene expression values and predicted to have habitat-specific traits. The Artic MAGs catalogue will inform our understanding of polar microorganisms that drive global biogeochemical cycles.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-021-00979-9&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 64 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41564-021-00979-9&type=result"></script>');
-->
</script>
handle: 2078.1/231548 , 10261/117712 , 10261/136426 , 2433/197950
Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1261359&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1261359&type=result"></script>');
-->
</script>
handle: 2078.1/231551 , 10261/117736
Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18 S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1261605&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1261605&type=result"></script>');
-->
</script>
Significance Diatoms, considered one of the most diverse and ecologically important phytoplanktonic groups, contribute around 20% of global primary productivity. They are particularly abundant in nutrient-rich coastal ecosystems and at high latitudes. Here, we have explored the dataset generated by Tara Oceans from a wide range of oceanic regions to characterize diatom diversity patterns on a global scale. We confirm the dominance of diatoms as a major photosynthetic group and identify the most widespread and diverse genera. We also provide a new estimate of marine planktonic diatom diversity and a global view of their distribution in the world’s ocean.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1509523113&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 540 | |
popularity | Top 0.1% | |
influence | Top 1% | |
impulse | Top 0.1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1509523113&type=result"></script>');
-->
</script>
Abstract. Ocean color remote sensing offers two decades-long time series of information on phytoplankton abundance. However, determining the structure of the phytoplankton community from this signal is not straightforward, and many uncertainties remain to be evaluated, despite multiple intercomparison efforts of the different available algorithms. Here, we use remote sensing and machine learning to infer the abundance of seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. Our dataset is to our knowledge the most comprehensive and complete, available to describe phytoplankton community structure at a global scale using a molecular marker that defines relative abundances of all phytoplankton groups simultaneously. The methodology shows satisfying performances to provide robust estimates of phytoplankton groups using satellite data, with few limitations regarding the global generalization of the method. Furthermore, this new satellite-based methodology allows a valuable global intercomparison with the pigment-based approach used in in-situ and satellite data to identify phytoplankton groups. Nevertheless, these datasets show different, yet coherent information on the phytoplankton, valuable for the understanding of community structure. This makes remote sensing observations excellent tools to collect Essential Biodiversity Variables and provide a foundation for developing marine biodiversity forecasts.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-1421&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |