Loading
description Publicationkeyboard_double_arrow_right Conference object 2022 Spain EnglishAuthors: Cervera, L. (Laura); Arizcun-Arizcun, M. (Marta); Cuesta, A. (Alberto); Chaves-Pozo, E. (Elena);Cervera, L. (Laura); Arizcun-Arizcun, M. (Marta); Cuesta, A. (Alberto); Chaves-Pozo, E. (Elena);handle: 10508/15952 , 10261/313415
Aquaculture is one of the most prosperous economic sectors. Nevertheless, the natural outbreaks of several infectious diseases make the sector to deal with important economic losses. One of the most important pathogens in the Mediterranean Sea is nodavirus (NNV). NNV is the agent causing viral encephalopathy and retinopathy in more than 170 fish species including some of the most impact in Spanish hatcheries as European sea bass (Dicentrarchus labrax). Antimicrobial peptides (AMPs) are short aminoacidic sequences which constitute important mediators of the innate immune response in teleost fish. AMPs can kill directly a broad range of pathogens such as bacteria or viruses and modulate the host immune response leading to a more effective clearance of pathogens. These properties along with the world emergency in antimicrobial resistance (AMR) make AMPs good candidates to replace traditional antimicrobials. Therefore, we aimed to analyze the molecular regulation of European sea bass defensin beta genes upon NNV infection and after NNV vaccination. To achieve our objective, European sea bass were infected with NNV and samples of head-kidney (HK), brain and gonad were taken. In addition, gonadal cells from healthy males were in vitro stimulated with NNV. Then, ovary samples of control females or vaccinated against NNV (pBAD vaccine) were taken, as well as fertilized eggs and larvae from the same groups. To support our data, we also analyzed in silico the potential antiviral activity of the protein encoded by the studied genes. Our results show that defensin beta 1 gene is up-regulated upon in vivo NNV infection even if in the in silico study showed the lesser predicted activity. Interestingly, the in vitro NNV challenge resulted in no variation of the defensin beta 1 gene, while defensin beta 2.1 and 2.2 genes were blocked upon this stimulus. Strikingly, females vaccinated with pBAD greatly down-regulate defensin beta 2.2 expression. Moreover, larvae from vaccinated mother up-regulate all defensin beta genes. In conclusion, defensin beta 1 gene seems to be involved in the defense against viruses while defensin beta 2 genes appear to possess a more specific function in gonad. Evaluación de los efectos de las microalgas, incluidas en dietas de dorada, sobre el crecimiento, supervivencia y resistencia a infecciones. ALGAFISH
Repositorio Instituc... arrow_drop_down Repositorio Institucional Digital del IEOOther ORP type . Conference object . 2022Data sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/15952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional Digital del IEOOther ORP type . Conference object . 2022Data sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/15952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Netherlands EnglishMDPI EC | INSECT DOCTORSIrene K. Meki; Hannah-Isadora Huditz; Anton Strunov; René A. A. van der Vlugt; Henry M. Kariithi; Mohammadreza Rezapanah; Wolfgang J. Miller; Just M. Vlak; Monique M. van Oers; Adly M. M. Abd-Alla;Tsetse flies cause major health and economic problems as they transmit trypanosomes causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in animals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful application of SIT, it is important to establish and maintain healthy insect colonies and produce flies with competitive fitness. However, mass production of tsetse is threatened by covert virus infections, such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans morsitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can be found not only in the host’s brain and fat bodies but also in their reproductive organs, and in milk and salivary glands. These findings suggest a potential horizontal viral transmission during feeding and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species show any signs of disease from these viruses.
Viruses arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/v13122472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Viruses arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/v13122472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2019 Austria EnglishPublic Library of Science FWF | Analyses of inner brain O..., EC | LUNAR.CLOCK, EC | Mari.TimeBruno M. Fontinha; Theresa Zekoll; Mariam Al-Rawi; Miguel Gallach; Florian Reithofer; Alison J. Barker; Maximilian Hofbauer; Ruth M. Fischer; Arndt von Haeseler; Herwig Baier; Kristin Tessmar-Raible;Vertebrate behavior is strongly influenced by light. Light receptors, encoded by functional opsin proteins, are present inside the vertebrate brain and peripheral tissues. This expression feature is present from fishes to human and appears to be particularly prominent in diurnal vertebrates. Despite their conserved widespread occurrence, the nonvisual functions of opsins are still largely enigmatic. This is even more apparent when considering the high number of opsins. Teleosts possess around 40 opsin genes, present from young developmental stages to adulthood. Many of these opsins have been shown to function as light receptors. This raises the question of whether this large number might mainly reflect functional redundancy or rather maximally enables teleosts to optimally use the complex light information present under water. We focus on tmt-opsin1b and tmt-opsin2, c-opsins with ancestral-type sequence features, conserved across several vertebrate phyla, expressed with partly similar expression in non-rod, non-cone, non-retinal-ganglion-cell brain tissues and with a similar spectral sensitivity. The characterization of the single mutants revealed age- and light-dependent behavioral changes, as well as an impact on the levels of the preprohormone sst1b and the voltage-gated sodium channel subunit scn12aa. The amount of daytime rest is affected independently of the eyes, pineal organ, and circadian clock in tmt-opsin1b mutants. We further focused on daytime behavior and the molecular changes in tmt-opsin1b/2 double mutants, and found that—despite their similar expression and spectral features—these opsins interact in part nonadditively. Specifically, double mutants complement molecular and behavioral phenotypes observed in single mutants in a partly age-dependent fashion. Our work provides a starting point to disentangle the highly complex interactions of vertebrate nonvisual opsins, suggesting that tmt-opsin-expressing cells together with other visual and nonvisual opsins provide detailed light information to the organism for behavioral fine-tuning. This work also provides a stepping stone to unravel how vertebrate species with conserved opsins, but living in different ecological niches, respond to similar light cues and how human-generated artificial light might impact on behavioral processes in natural environments. Why do teleosts possess more than 40 opsins, many expressed outside the eyes? This study reveals that combined loss of two non-visual opsins rescues the effects of their individual losses on behavior, and on brain levels of the pre-pro-hormone sst1b and a voltage-gated sodium channel subunit. This implicates tmt-opsin-expressing cells, together with other opsins, in behavioral fine-tuning, dependent on ambient light.
PLoS Biology arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsOther literature type . 2021PLoS BiologyOther literature type . Article . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/698480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS Biology arrow_drop_down Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsOther literature type . 2021PLoS BiologyOther literature type . Article . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/698480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2015 Portugal EnglishBioMed Central - BMC Genomics FCT | EXCL/BIA-ANM/0549/2012José Miguel Simões; Eduardo N. Barata; Robert M Harris; Lauren A. O’Connell; Hans A. Hofmann; Rui Filipe Oliveira;Background: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment. Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) [EXCL/BIA-ANM/0549/2012, Pest-OE/MAR/UI0331/2011]; Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology; Institute for Cellular and Molecular Biology Fellowship; FCT info:eu-repo/semantics/publishedVersion
BMC Genomics arrow_drop_down BMC GenomicsArticle . 2015Sapientia Repositório da Universidade do AlgarveArticle . 2015Data sources: Sapientia Repositório da Universidade do AlgarveRepositório Científico da Universidade de ÉvoraArticle . 2015Data sources: Repositório Científico da Universidade de ÉvoraAccess to Research and Communications AnnalsArticle . 2015Data sources: Access to Research and Communications Annalsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12864-015-1255-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 415visibility views 415 download downloads 412 Powered bymore_vert BMC Genomics arrow_drop_down BMC GenomicsArticle . 2015Sapientia Repositório da Universidade do AlgarveArticle . 2015Data sources: Sapientia Repositório da Universidade do AlgarveRepositório Científico da Universidade de ÉvoraArticle . 2015Data sources: Repositório Científico da Universidade de ÉvoraAccess to Research and Communications AnnalsArticle . 2015Data sources: Access to Research and Communications Annalsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12864-015-1255-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013 Italy EnglishAmerican Association for the Advancement of Science, Washington, DC , Stati Uniti d'America EC | IEMTXRosa Ferriero; Giuseppe Manco; Eleonora Lamantea; Edoardo Nusco; Mariella I. Ferrante; Paolo Sordino; Peter W. Stacpoole; Brendan Lee; Massimo Zeviani; Nicola Brunetti-Pierri;Lactic acidosis is a buildup of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1 alpha subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57BL/6 wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1 alpha in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1 alpha through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noa(m631) zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/scitranslmed.3004986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/scitranslmed.3004986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018 Spain EnglishPublic Library of Science (PLoS) EC | NEURAL AS, NIH | Development of RNA interf..., NIH | Functional analysis of th...Juan P. Fernandez; Miguel A. Moreno-Mateos; Andre Gohr; Liyun Miao; Shun Hang Chan; Manuel Irimia; Antonio J. Giraldez;Pre-mRNA splicing is a critical step of gene expression in eukaryotes. Transcriptome-wide splicing patterns are complex and primarily regulated by a diverse set of recognition elements and associated RNA-binding proteins. The retention and splicing (RES) complex is formed by three different proteins (Bud13p, Pml1p and Snu17p) and is involved in splicing in yeast. However, the importance of the RES complex for vertebrate splicing, the intronic features associated with its activity, and its role in development are unknown. In this study, we have generated loss-of-function mutants for the three components of the RES complex in zebrafish and showed that they are required during early development. The mutants showed a marked neural phenotype with increased cell death in the brain and a decrease in differentiated neurons. Transcriptomic analysis of bud13, snip1 (pml1) and rbmx2 (snu17) mutants revealed a global defect in intron splicing, with strong mis-splicing of a subset of introns. We found these RES-dependent introns were short, rich in GC and flanked by GC depleted exons, all of which are features associated with intron definition. Using these features, we developed and validated a predictive model that classifies RES dependent introns. Altogether, our study uncovers the essential role of the RES complex during vertebrate development and provides new insights into its function during splicing. Author summary RES complex is essential for splicing in yeast but its function and role during vertebrate development are unknown. Here, we combined genetic loss-of-function mutants with transcriptomic analysis and found that a subset of introns is particularly affected in RES complex knock-out background. Those introns display the major hallmarks of splicing through intron definition mechanisms (short introns, rich in GC and flanked by GC depleted exons). Moreover, bud13, rbmx2 and snip1 mutant embryos showed a marked brain phenotype with a RES-dependent introns enrichment in genes with neurodevelopmental function. Altogether, our study unveils the fundamental role of RES complex during zebrafish embryogenesis and provides new insights into its molecular function in splicing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1007473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pgen.1007473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012 Spain EnglishElsevier Authors: Alejandro S. Mechaly; Jordi Viñas; Francesc Piferrer;Alejandro S. Mechaly; Jordi Viñas; Francesc Piferrer;Kisspeptin is thought to have a major role in the control of the onset of puberty in vertebrates. However, our current understanding of its function in fish and how it integrates with other hormones is incomplete due to the high diversity of this group of animals and a still limited amount of available data. This study examined the temporal and spatial changes in expression of kisspeptin, gonadotropins and their respective receptors in the Senegalese sole during a full reproductive cycle. Kiss2 and kiss2r expression was determined by qRT-PCR in the forebrain and midbrain while expression of fshβ and lhβ was determined in the pituitary and fshr and lhr in the gonads. Plasma levels of testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17β were measured by ELISA and gonadal maturation was assessed histologically. In males, kiss2 and kiss2r expression in the brain areas examined was highest towards the end of winter, just before the spawning season, which took place the following spring. This coincided with maximum levels of pituitary fshβ and lhβ, plasma T and 11-KT and the highest number of maturing fish. However, these associations were not evident in females, since the highest expression of kiss2, kiss2r and gonadotropins were observed in the fall, winter or spring, depending upon the variable and tissue considered. Taken together, these data show not only temporal and spatial, but also sex-specific differences in the expression of kisspeptin and its receptor. Thus, while expression of kiss2 in Senegalese sole males agrees with what one would expect according to its proposed role as a major regulator of the onset of reproduction, in females the situation was not so clear, since kiss2 and kiss2r expression was highest either before or during the spawning season A.S.M. was supported by a predoctoral scholarship from the Spanish Ministry of Science and Innovation (MICINN). This study was carried out with the financial help of project “Pleurogene”, and also partially funded by project “Aquagenomics” (CDS-2007-0002), both to F.P. 8 pages, 8 figures, 1 table Peer reviewed
Comparative Biochemi... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2012Comparative Biochemistry and Physiology Part A Molecular & Integrative PhysiologyArticle . 2012Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2012.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 58 Powered bymore_vert Comparative Biochemi... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTA; DIGITAL.CSICArticle . 2012Comparative Biochemistry and Physiology Part A Molecular & Integrative PhysiologyArticle . 2012Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2012.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 France EnglishHAL CCSD Caroline Vignet; Verena M. Trenkel; Annick Vouillarmet; Giampiero Bricca; Marie-Laure Bégout; Xavier Cousin;Supplementary materials can be found at www.mdpi.com/1422-0067/18/3/560/s1; Zebrafish were exposed through diet to two environmentally relevant polycyclic aromatic hydrocarbons (PAHs) mixtures of contrasted compositions, one of pyrolytic (PY) origin and one from light crude oil (LO). Monoamine concentrations were quantified in the brains of the fish after six month of exposure. A significant decrease in noradrenaline (NA) was observed in fish exposed to both mixtures, while a decrease in serotonin (5HT) and dopamine (DA) was observed only in LO-exposed fish. A decrease in metabolites of 5HT and DA was observed in fish exposed to both mixtures. Several behavioural disruptions were observed that depended on mixtures, and parallels were made with changes in monoamine concentrations. Indeed, we observed an increase in anxiety in fish exposed to both mixtures, which could be related to the decrease in 5HT and/ or NA, while disruptions of daily activity rhythms were observed in LO fish, which could be related to the decrease in DA. Taken together, these results showed that (i) chronic exposures to PAHs mixtures disrupted brain monoamine contents, which could underlie behavioural disruptions, and that (ii) the biological responses depended on mixture compositions.
ProdInra arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms18030560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 1 Powered bymore_vert ProdInra arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms18030560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 United Kingdom, Spain EnglishNature Publishing Group WT, EC | FISHBOOST, UKRI | RCUK-CONICYT: Utilising f...Diego Robledo; Juan A. Rubiolo; Santiago Cabaleiro; Paulino Martínez; Carmen Bouza;pmc: PMC5608734
pmid: 28935875
Growth is among the most important traits for animal breeding. Understanding the mechanisms underlying growth differences between individuals can contribute to improving growth rates through more efficient breeding schemes. Here, we report a transcriptomic study in muscle and brain of fast- and slow-growing turbot (Scophthalmus maximus), a relevant flatfish in European and Asian aquaculture. Gene expression and allelic association between the two groups were explored. Up-regulation of the anaerobic glycolytic pathway in the muscle of fast-growing fish was observed, indicating a higher metabolic rate of white muscle. Brain expression differences were smaller and not associated with major growth-related genes, but with regulation of feeding-related sensory pathways. Further, SNP variants showing frequency differences between fast- and slow-growing fish pointed to genomic regions likely involved in growth regulation, and three of them were individually validated through SNP typing. Although different mechanisms appear to explain growth differences among families, general mechanisms seem also to be involved, and thus, results provide a set of useful candidate genes and markers to be evaluated for more efficient growth breeding programs and to perform comparative genomic studies of growth in fish and vertebrates This work was funded by Spanish Ministry of Economy and Competitiveness and European Regional Development Funds (AGL2012-35904), Ministry of Science and Innovation (Consolider Ingenio, Aquagenomics, CSD2007-00002), and Local Government. Xunta de Galicia (GRC2014/010). DR was supported by a FPU fellowship funded by Spanish Ministry of Education, Culture and Sport (AP2012-0254) and a postdoctoral contract funded by the Biotechnology and Biological Science Research Council (BBSRC) grant BB/N024044/1 SI
Edinburgh Research E... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-12459-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Edinburgh Research E... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-017-12459-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 EnglishPublic Library of Science Haifang Wang; Zeyong Yang; Xingxing Li; Dengfeng Huang; Shuguang Yu; Jie He; Yuanhai Li; Jun Yan;The circadian clock is a cell-autonomous time-keeping mechanism established gradually during embryonic development. Here, we generated a transgenic zebrafish line carrying a destabilized fluorescent protein driven by the promoter of a core clock gene, nr1d1, to report in vivo circadian rhythm at the single-cell level. By time-lapse imaging of this fish line and 3D reconstruction, we observed the sequential initiation of the reporter expression starting at photoreceptors in the pineal gland, then spreading to the cells in other brain regions at the single-cell level. Even within the pineal gland, we found heterogeneous onset of nr1d1 expression, in which each cell undergoes circadian oscillation superimposed over a cell type–specific developmental trajectory. Furthermore, we found that single-cell expression of nr1d1 showed synchronous circadian oscillation under a light–dark (LD) cycle. Remarkably, single-cell oscillations were dramatically dampened rather than desynchronized in animals raised under constant darkness, while the developmental trend still persists. It suggests that light exposure in early zebrafish embryos has significant effect on cellular circadian oscillations. A transgenic zebrafish line, nr1d1-VNP, enables the monitoring of single-cell circadian rhythms in live zebrafish; using this fish line, the authors find that light exposure in early development initializes rather than synchronizes single-cell oscillators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3000435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3000435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Conference object 2022 Spain EnglishAuthors: Cervera, L. (Laura); Arizcun-Arizcun, M. (Marta); Cuesta, A. (Alberto); Chaves-Pozo, E. (Elena);Cervera, L. (Laura); Arizcun-Arizcun, M. (Marta); Cuesta, A. (Alberto); Chaves-Pozo, E. (Elena);handle: 10508/15952 , 10261/313415
Aquaculture is one of the most prosperous economic sectors. Nevertheless, the natural outbreaks of several infectious diseases make the sector to deal with important economic losses. One of the most important pathogens in the Mediterranean Sea is nodavirus (NNV). NNV is the agent causing viral encephalopathy and retinopathy in more than 170 fish species including some of the most impact in Spanish hatcheries as European sea bass (Dicentrarchus labrax). Antimicrobial peptides (AMPs) are short aminoacidic sequences which constitute important mediators of the innate immune response in teleost fish. AMPs can kill directly a broad range of pathogens such as bacteria or viruses and modulate the host immune response leading to a more effective clearance of pathogens. These properties along with the world emergency in antimicrobial resistance (AMR) make AMPs good candidates to replace traditional antimicrobials. Therefore, we aimed to analyze the molecular regulation of European sea bass defensin beta genes upon NNV infection and after NNV vaccination. To achieve our objective, European sea bass were infected with NNV and samples of head-kidney (HK), brain and gonad were taken. In addition, gonadal cells from healthy males were in vitro stimulated with NNV. Then, ovary samples of control females or vaccinated against NNV (pBAD vaccine) were taken, as well as fertilized eggs and larvae from the same groups. To support our data, we also analyzed in silico the potential antiviral activity of the protein encoded by the studied genes. Our results show that defensin beta 1 gene is up-regulated upon in vivo NNV infection even if in the in silico study showed the lesser predicted activity. Interestingly, the in vitro NNV challenge resulted in no variation of the defensin beta 1 gene, while defensin beta 2.1 and 2.2 genes were blocked upon this stimulus. Strikingly, females vaccinated with pBAD greatly down-regulate defensin beta 2.2 expression. Moreover, larvae from vaccinated mother up-regulate all defensin beta genes. In conclusion, defensin beta 1 gene seems to be involved in the defense against viruses while defensin beta 2 genes appear to possess a more specific function in gonad. Evaluación de los efectos de las microalgas, incluidas en dietas de dorada, sobre el crecimiento, supervivencia y resistencia a infecciones. ALGAFISH
Repositorio Instituc... arrow_drop_down Repositorio Institucional Digital del IEOOther ORP type . Conference object . 2022Data sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/15952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional Digital del IEOOther ORP type . Conference object . 2022Data sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/15952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Netherlands EnglishMDPI EC | INSECT DOCTORSIrene K. Meki; Hannah-Isadora Huditz; Anton Strunov; René A. A. van der Vlugt; Henry M. Kariithi; Mohammadreza Rezapanah; Wolfgang J. Miller; Just M. Vlak; Monique M. van Oers; Adly M. M. Abd-Alla;Tsetse flies cause major health and economic problems as they transmit trypanosomes causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in animals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful application of SIT, it is important to establish and maintain healthy insect colonies and produce flies with competitive fitness. However, mass production of tsetse is threatened by covert virus infections, such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans morsitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can be found not only in the host’s brain and fat bodies but also in their reproductive organs, and in milk and salivary glands. These findings suggest a potential horizontal viral transmission during feeding and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species show any signs of disease from these viruses.
Viruses arrow_drop_down