Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
676 Research products, page 1 of 68

  • Other research products
  • Open Access
  • English
  • EBRAINS

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Webb, Andrew; Shchelokova, Alena; Slobozhanyuk, Alexey; Zivkovic, Irena; Schmidt, Rita;
    Country: Netherlands

    This article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple “dielectric pads” for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.

  • Open Access English
    Authors: 
    Takemoto, Ayumi; Iwaki, Sunao; Duo, Zhoumao; Yasumuro, Shinobu; Kumada, Takatsune;
    Country: Latvia

    © 2022. The Author(s). It has been well-documented that brain regions related to a task are activated during the task performance. We investigated whether brain activity and functional connectivity during the rest period are affected by the preceding task. Participants performed visual search tasks with three search conditions, which were followed by a rest period. During the rest period, participants were asked to look at the display that did not show any visual stimuli. In the result, brain activity in occipital and superior parietal regions would be deactivated by the preceding task during the rest period after visual search tasks. However, the activity of the inferior frontal gyrus during the rest period, which is also part of the attention network, was not affected by the brain activity during the preceding visual search task. We proposed a new model for explaining how the cognitive demands of the preceding visual search task regulate the attention network during the rest period after the task. In this model, the cognitive demand changes with task difficulty, which affects the brain activity even after removing the visual search task in the rest phase. publishersversion Peer reviewed

  • Open Access English
    Authors: 
    van der Meer, Dennis; Kaufmann, Tobias;
    Country: Netherlands

    Cortical morphology is a key determinant of cognitive ability and mental health. Its development is a highly intricate process spanning decades, involving the coordinated, localized expression of thousands of genes. We are now beginning to unravel the genetic architecture of cortical morphology, thanks to the recent availability of large-scale neuroimaging and genomic data and the development of powerful biostatistical tools. Here, we review the progress made in this field, providing an overview of the lessons learned from genetic studies of cortical volume, thickness, surface area, and folding as captured by neuroimaging. It is now clear that morphology is shaped by thousands of genetic variants, with effects that are region- and time-dependent, thereby challenging conventional study approaches. The most recent genome-wide association studies have started discovering common genetic variants influencing cortical thickness and surface area, yet together these explain only a fraction of the high heritability of these measures. Further, the impact of rare variants and non-additive effects remains elusive. There are indications that the quickly increasing availability of data from whole-genome sequencing and large, deeply phenotyped population cohorts across the lifespan will enable us to uncover much of the missing heritability in the upcoming years. Novel approaches leveraging shared information across measures will accelerate this process by providing substantial increases in statistical power, together with more accurate mapping of genetic relationships. Important challenges remain, including better representation of understudied demographic groups, integration of other 'omics data, and mapping of effects from gene to brain to behavior across the lifespan.

  • Open Access English
    Authors: 
    Kraljič, Aleksij; Matkovič, Andraž; Purg, Nina; Demšar, Jure; Repovš, Grega;
    Publisher: Frontiers Media SA
    Country: Slovenia

    Multimodal neuroimaging using EEG and fMRI provides deeper insights into brain function by improving the spatial and temporal resolution of the acquired data. However, simultaneous EEG-fMRI inevitably compromises the quality of the EEG and fMRI signals due to the high degree of interaction between the two systems. Fluctuations in the magnetic flux flowing through the participant and the EEG system, whether due to movement within the magnetic field of the scanner or to changes in magnetic field strength, induce electrical potentials in the EEG recordings that mask the much weaker electrical activity of the neuronal populations. A number of different methods have been proposed to reduce MR artifacts. We present an overview of the most commonly used methods and an evaluation of the methods using three sets of diverse EEG data. We limited the evaluation to open-access and easy-to-use methods and a reference signal regression method using a set of six carbon-wire loops (CWL), which allowed evaluation of their added value. The evaluation was performed by comparing EEG signals recorded outside the MRI scanner with artifact-corrected EEG signals recorded simultaneously with fMRI. To quantify and evaluate the quality of artifact reduction methods in terms of the spectral content of the signal, we analyzed changes in oscillatory activity during a resting-state and a finger tapping motor task. The quality of artifact reduction in the time domain was assessed using data collected during a visual stimulation task. In the study we utilized hierarchical Bayesian probabilistic modeling for statistical inference and observed significant differences between the evaluated methods in the success of artifact reduction and associated signal quality in both the frequency and time domains. In particular, the CWL system proved superior to the other methods evaluated in improving spectral contrast in the alpha and beta bands and in recovering visual evoked responses. Based on the results of the evaluation study, we proposed guidelines for selecting the optimal method for MR artifact reduction.

  • Open Access English
    Authors: 
    Lahti, Jari; Tuominen, Samuli; Yang, Qiong; Pergola, Giulio; Ahmad, Shahzad; Amin, Najaf; Armstrong, Nicola J.; Beiser, Alexa; Bey, Katharina; Bis, Joshua C.; +40 more
    Country: Iceland

    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes. Publisher Copyright: © 2022, The Author(s). Peer reviewed

  • Open Access English
    Authors: 
    Nash, Mikyla;
    Country: Canada

    Intertidal crustaceans like Carcinus maenas shift between an osmoconforming and osmoregulating state when inhabiting full-strength seawater and dilute environments, respectively. While the bodily fluids and environment of marine osmoconformers are approximately isosmotic, osmoregulating crabs inhabiting dilute environments maintain their bodily fluid osmolality above that of their environment by actively absorbing and retaining osmolytes (e.g., Na+, Cl-, urea) while eliminating excess water. Few studies have investigated the role of aquaporins (AQPs) in the osmoregulatory organs of crustaceans, especially within brachyuran species. In the current study, three different aquaporins were identified within a transcriptome of C. maenas, including a classical AQP (CmAQP1), an aquaglyceroporin (CmGLP1), and a big-brain protein (CmBIB1), all of which are expressed in the gills and the antennal glands. Functional expression of these aquaporins confirmed water transport capabilities for CmAQP1, CmGLP1, but not for CmBIB1, while CmGLP1 also transported urea. Higher relative CmAQP1 mRNA expression within tissues of osmoconforming crabs suggests the apical/sub-apically localized channel attenuates osmotic gradients created by non- osmoregulatory processes while its downregulation in dilute media reduces the water permeability of tissues to facilitate osmoregulation. Although hemolymph urea concentrations rose upon exposure to brackish water, urea was not detected in the final urine. Due to its urea- transport capabilities, CmGLP1 is hypothesized to be involved in a urea retention mechanism believed to be involved in the production of diluted urine. Overall, these results suggest that AQPs are involved in osmoregulation and provide a basis for future mechanistic studies investigating the role of AQPs in volume regulation in crustaceans.

  • Open Access English
    Authors: 
    Felsch, Corinna L.; Kuypers, Kim P.C.;
    Country: Netherlands

    BACKGROUND: Current first-line treatment for social anxiety disorder (SAD), one of the most prevalent anxiety disorders, is limited in its efficacy. Hence, novel treatment approaches are urgently needed. The current review suggests a combination of meditation-based interventions and the administration of a psychedelic as a future alternative treatment approach. While both separate treatments show promise in the treatment of (other) clinical conditions, their combination has not yet been investigated in the treatment of psychopathologies. AIM: With a systematic literature review, we aim to identify the potential mechanisms by which combined psilocybin and mindfulness treatment could adjust anomalous neural activity underlying SAD and exert therapeutic effects. RESULTS: Thirty experimental studies investigating the neural effects of meditation or psilocybin treatment in healthy and patient samples were included. Findings suggest that psilocybin-assisted meditation interventions might change cognitive processes like biased attention to threat linked to SAD by modulating connectivity of the salience network, balancing the activity and connectivity of cortical-midline structures, and increasing frontoparietal control over amygdala reactivity. CONCLUSIONS: Future studies should investigate whether psilocybin-assisted mindfulness-based intervention can provide therapeutic benefits to SAD patients who are do not remit following conventional therapy.

  • Other research product . Other ORP type . 2022
    Open Access English
    Authors: 
    Dekkers, Alies J.; Amaya, Jorge M.; van der Meulen, Merel; Biermasz, Nienke R.; Meijer, Onno C.; Pereira, Alberto M.;
    Country: Netherlands

    The metabolic and cardiovascular clinical manifestations in patients with Cushing's syndrome (CS) are generally well known. However, recent studies have broadened the perspective of the effects of hypercortisolism, showing that both endogenous and exogenous glucocorticoid excess alter brain functioning on several time scales. Consequently, cognitive deficits and neuropsychological symptoms are highly prevalent during both active CS and CS in remission, as well as during glucocorticoid treatment. In this review, we discuss the effects of endogenous hypercortisolism and exogenously induced glucocorticoid excess on the brain, as well as the prevalence of cognitive and neuropsychological deficits and their course after biochemical remission. Furthermore, we propose possible mechanisms that may underly neuronal changes, based on experimental models and in vitro studies. Finally, we offer recommendations for future studies.

  • Open Access English
    Authors: 
    Cardoso, André L B D; Sá-Caputo, Danúbia C; Asad, Nasser R; van Heuvelen, Marieke J G; van der Zee, Eddy A; Ribeiro-Carvalho, Anderson; Bernardo-Filho, Mario;
    Country: Netherlands

    Brain disorders have been a health challenge and is increasing over the years. Early diagnosis and interventions are considered essential strategies to treat patients at risk of brain disease. Physical exercise has shown to be beneficial for patients with brain diseases. A type of exercise intervention known as whole-body vibration (WBV) exercise gained increasing interest. During WBV, mechanical vibrations, produced by a vibrating platform are transmitted, to the body. The purpose of the current review was to summarize the effects of WBV exercise on brain function and behavior in experimental studies with animal models. Searches were performed in EMBASE, PubMed, Scopus and Web of Science including publications from 1960 to July 2021, using the keywords "whole body vibration" AND (animal or mice or mouse or rat or rodent). From 1284 hits, 20 papers were selected. Rats were the main animal model used (75%) followed by mice (20%) and porcine model (5%), 16 studies used males species and 4 females. The risk of bias, accessed with the SYRCLE Risk of Bias tool, indicated that none of the studies fulfilled all methodological criteria, resulting in possible bias. Despite heterogeneity, the results suggest beneficial effects of WBV exercise on brain functioning, mainly related to motor performance, coordination, behavioral control, neuronal plasticity and synapse function. In conclusion, the findings observed in animal studies justifies continued clinical research regarding the effectiveness and potential of WBV for the treatment of various types of brain disorders such as trauma, developmental disorders, neurogenetic diseases and other neurological diseases.

  • Open Access English
    Authors: 
    Honcamp, Hanna; Schwartze, Michael; Linden, David E.J.; El-Deredy, Wael; Kotz, Sonja A.;
    Country: Netherlands

    In the absence of sensory stimulation, the brain transits between distinct functional networks. Network dynamics such as transition patterns and the time the brain stays in each network link to cognition and behavior and are subject to much investigation. Auditory verbal hallucinations (AVH), the temporally fluctuating unprovoked experience of hearing voices, are associated with aberrant resting state network activity. However, we lack a clear understanding of how different networks contribute to aberrant activity over time. An accurate characterization of latent network dynamics and their relation to neurocognitive changes necessitates methods that capture the sub-second temporal fluctuations of the networks' functional connectivity signatures. Here, we critically evaluate the assumptions and sensitivity of several approaches commonly used to assess temporal dynamics of brain connectivity states in M/EEG and fMRI research, highlighting methodological constraints and their clinical relevance to AVH. Identifying altered brain connectivity states linked to AVH can facilitate the detection of predictive disease markers and ultimately be valuable for generating individual risk profiles, differential diagnosis, targeted intervention, and treatment strategies.

Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
676 Research products, page 1 of 68
  • Open Access English
    Authors: 
    Webb, Andrew; Shchelokova, Alena; Slobozhanyuk, Alexey; Zivkovic, Irena; Schmidt, Rita;
    Country: Netherlands

    This article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple “dielectric pads” for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.

  • Open Access English
    Authors: 
    Takemoto, Ayumi; Iwaki, Sunao; Duo, Zhoumao; Yasumuro, Shinobu; Kumada, Takatsune;
    Country: Latvia

    © 2022. The Author(s). It has been well-documented that brain regions related to a task are activated during the task performance. We investigated whether brain activity and functional connectivity during the rest period are affected by the preceding task. Participants performed visual search tasks with three search conditions, which were followed by a rest period. During the rest period, participants were asked to look at the display that did not show any visual stimuli. In the result, brain activity in occipital and superior parietal regions would be deactivated by the preceding task during the rest period after visual search tasks. However, the activity of the inferior frontal gyrus during the rest period, which is also part of the attention network, was not affected by the brain activity during the preceding visual search task. We proposed a new model for explaining how the cognitive demands of the preceding visual search task regulate the attention network during the rest period after the task. In this model, the cognitive demand changes with task difficulty, which affects the brain activity even after removing the visual search task in the rest phase. publishersversion Peer reviewed

  • Open Access English
    Authors: 
    van der Meer, Dennis; Kaufmann, Tobias;
    Country: Netherlands

    Cortical morphology is a key determinant of cognitive ability and mental health. Its development is a highly intricate process spanning decades, involving the coordinated, localized expression of thousands of genes. We are now beginning to unravel the genetic architecture of cortical morphology, thanks to the recent availability of large-scale neuroimaging and genomic data and the development of powerful biostatistical tools. Here, we review the progress made in this field, providing an overview of the lessons learned from genetic studies of cortical volume, thickness, surface area, and folding as captured by neuroimaging. It is now clear that morphology is shaped by thousands of genetic variants, with effects that are region- and time-dependent, thereby challenging conventional study approaches. The most recent genome-wide association studies have started discovering common genetic variants influencing cortical thickness and surface area, yet together these explain only a fraction of the high heritability of these measures. Further, the impact of rare variants and non-additive effects remains elusive. There are indications that the quickly increasing availability of data from whole-genome sequencing and large, deeply phenotyped population cohorts across the lifespan will enable us to uncover much of the missing heritability in the upcoming years. Novel approaches leveraging shared information across measures will accelerate this process by providing substantial increases in statistical power, together with more accurate mapping of genetic relationships. Important challenges remain, including better representation of understudied demographic groups, integration of other 'omics data, and mapping of effects from gene to brain to behavior across the lifespan.

  • Open Access English
    Authors: 
    Kraljič, Aleksij; Matkovič, Andraž; Purg, Nina; Demšar, Jure; Repovš, Grega;
    Publisher: Frontiers Media SA
    Country: Slovenia

    Multimodal neuroimaging using EEG and fMRI provides deeper insights into brain function by improving the spatial and temporal resolution of the acquired data. However, simultaneous EEG-fMRI inevitably compromises the quality of the EEG and fMRI signals due to the high degree of interaction between the two systems. Fluctuations in the magnetic flux flowing through the participant and the EEG system, whether due to movement within the magnetic field of the scanner or to changes in magnetic field strength, induce electrical potentials in the EEG recordings that mask the much weaker electrical activity of the neuronal populations. A number of different methods have been proposed to reduce MR artifacts. We present an overview of the most commonly used methods and an evaluation of the methods using three sets of diverse EEG data. We limited the evaluation to open-access and easy-to-use methods and a reference signal regression method using a set of six carbon-wire loops (CWL), which allowed evaluation of their added value. The evaluation was performed by comparing EEG signals recorded outside the MRI scanner with artifact-corrected EEG signals recorded simultaneously with fMRI. To quantify and evaluate the quality of artifact reduction methods in terms of the spectral content of the signal, we analyzed changes in oscillatory activity during a resting-state and a finger tapping motor task. The quality of artifact reduction in the time domain was assessed using data collected during a visual stimulation task. In the study we utilized hierarchical Bayesian probabilistic modeling for statistical inference and observed significant differences between the evaluated methods in the success of artifact reduction and associated signal quality in both the frequency and time domains. In particular, the CWL system proved superior to the other methods evaluated in improving spectral contrast in the alpha and beta bands and in recovering visual evoked responses. Based on the results of the evaluation study, we proposed guidelines for selecting the optimal method for MR artifact reduction.

  • Open Access English
    Authors: 
    Lahti, Jari; Tuominen, Samuli; Yang, Qiong; Pergola, Giulio; Ahmad, Shahzad; Amin, Najaf; Armstrong, Nicola J.; Beiser, Alexa; Bey, Katharina; Bis, Joshua C.; +40 more
    Country: Iceland

    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes. Publisher Copyright: © 2022, The Author(s). Peer reviewed

  • Open Access English
    Authors: 
    Nash, Mikyla;
    Country: Canada

    Intertidal crustaceans like Carcinus maenas shift between an osmoconforming and osmoregulating state when inhabiting full-strength seawater and dilute environments, respectively. While the bodily fluids and environment of marine osmoconformers are approximately isosmotic, osmoregulating crabs inhabiting dilute environments maintain their bodily fluid osmolality above that of their environment by actively absorbing and retaining osmolytes (e.g., Na+, Cl-, urea) while eliminating excess water. Few studies have investigated the role of aquaporins (AQPs) in the osmoregulatory organs of crustaceans, especially within brachyuran species. In the current study, three different aquaporins were identified within a transcriptome of C. maenas, including a classical AQP (CmAQP1), an aquaglyceroporin (CmGLP1), and a big-brain protein (CmBIB1), all of which are expressed in the gills and the antennal glands. Functional expression of these aquaporins confirmed water transport capabilities for CmAQP1, CmGLP1, but not for CmBIB1, while CmGLP1 also transported urea. Higher relative CmAQP1 mRNA expression within tissues of osmoconforming crabs suggests the apical/sub-apically localized channel attenuates osmotic gradients created by non- osmoregulatory processes while its downregulation in dilute media reduces the water permeability of tissues to facilitate osmoregulation. Although hemolymph urea concentrations rose upon exposure to brackish water, urea was not detected in the final urine. Due to its urea- transport capabilities, CmGLP1 is hypothesized to be involved in a urea retention mechanism believed to be involved in the production of diluted urine. Overall, these results suggest that AQPs are involved in osmoregulation and provide a basis for future mechanistic studies investigating the role of AQPs in volume regulation in crustaceans.

  • Open Access English
    Authors: 
    Felsch, Corinna L.; Kuypers, Kim P.C.;
    Country: Netherlands

    BACKGROUND: Current first-line treatment for social anxiety disorder (SAD), one of the most prevalent anxiety disorders, is limited in its efficacy. Hence, novel treatment approaches are urgently needed. The current review suggests a combination of meditation-based interventions and the administration of a psychedelic as a future alternative treatment approach. While both separate treatments show promise in the treatment of (other) clinical conditions, their combination has not yet been investigated in the treatment of psychopathologies. AIM: With a systematic literature review, we aim to identify the potential mechanisms by which combined psilocybin and mindfulness treatment could adjust anomalous neural activity underlying SAD and exert therapeutic effects. RESULTS: Thirty experimental studies investigating the neural effects of meditation or psilocybin treatment in healthy and patient samples were included. Findings suggest that psilocybin-assisted meditation interventions might change cognitive processes like biased attention to threat linked to SAD by modulating connectivity of the salience network, balancing the activity and connectivity of cortical-midline structures, and increasing frontoparietal control over amygdala reactivity. CONCLUSIONS: Future studies should investigate whether psilocybin-assisted mindfulness-based intervention can provide therapeutic benefits to SAD patients who are do not remit following conventional therapy.

  • Other research product . Other ORP type . 2022
    Open Access English
    Authors: 
    Dekkers, Alies J.; Amaya, Jorge M.; van der Meulen, Merel; Biermasz, Nienke R.; Meijer, Onno C.; Pereira, Alberto M.;
    Country: Netherlands

    The metabolic and cardiovascular clinical manifestations in patients with Cushing's syndrome (CS) are generally well known. However, recent studies have broadened the perspective of the effects of hypercortisolism, showing that both endogenous and exogenous glucocorticoid excess alter brain functioning on several time scales. Consequently, cognitive deficits and neuropsychological symptoms are highly prevalent during both active CS and CS in remission, as well as during glucocorticoid treatment. In this review, we discuss the effects of endogenous hypercortisolism and exogenously induced glucocorticoid excess on the brain, as well as the prevalence of cognitive and neuropsychological deficits and their course after biochemical remission. Furthermore, we propose possible mechanisms that may underly neuronal changes, based on experimental models and in vitro studies. Finally, we offer recommendations for future studies.

  • Open Access English
    Authors: 
    Cardoso, André L B D; Sá-Caputo, Danúbia C; Asad, Nasser R; van Heuvelen, Marieke J G; van der Zee, Eddy A; Ribeiro-Carvalho, Anderson; Bernardo-Filho, Mario;
    Country: Netherlands

    Brain disorders have been a health challenge and is increasing over the years. Early diagnosis and interventions are considered essential strategies to treat patients at risk of brain disease. Physical exercise has shown to be beneficial for patients with brain diseases. A type of exercise intervention known as whole-body vibration (WBV) exercise gained increasing interest. During WBV, mechanical vibrations, produced by a vibrating platform are transmitted, to the body. The purpose of the current review was to summarize the effects of WBV exercise on brain function and behavior in experimental studies with animal models. Searches were performed in EMBASE, PubMed, Scopus and Web of Science including publications from 1960 to July 2021, using the keywords "whole body vibration" AND (animal or mice or mouse or rat or rodent). From 1284 hits, 20 papers were selected. Rats were the main animal model used (75%) followed by mice (20%) and porcine model (5%), 16 studies used males species and 4 females. The risk of bias, accessed with the SYRCLE Risk of Bias tool, indicated that none of the studies fulfilled all methodological criteria, resulting in possible bias. Despite heterogeneity, the results suggest beneficial effects of WBV exercise on brain functioning, mainly related to motor performance, coordination, behavioral control, neuronal plasticity and synapse function. In conclusion, the findings observed in animal studies justifies continued clinical research regarding the effectiveness and potential of WBV for the treatment of various types of brain disorders such as trauma, developmental disorders, neurogenetic diseases and other neurological diseases.

  • Open Access English
    Authors: 
    Honcamp, Hanna; Schwartze, Michael; Linden, David E.J.; El-Deredy, Wael; Kotz, Sonja A.;
    Country: Netherlands

    In the absence of sensory stimulation, the brain transits between distinct functional networks. Network dynamics such as transition patterns and the time the brain stays in each network link to cognition and behavior and are subject to much investigation. Auditory verbal hallucinations (AVH), the temporally fluctuating unprovoked experience of hearing voices, are associated with aberrant resting state network activity. However, we lack a clear understanding of how different networks contribute to aberrant activity over time. An accurate characterization of latent network dynamics and their relation to neurocognitive changes necessitates methods that capture the sub-second temporal fluctuations of the networks' functional connectivity signatures. Here, we critically evaluate the assumptions and sensitivity of several approaches commonly used to assess temporal dynamics of brain connectivity states in M/EEG and fMRI research, highlighting methodological constraints and their clinical relevance to AVH. Identifying altered brain connectivity states linked to AVH can facilitate the detection of predictive disease markers and ultimately be valuable for generating individual risk profiles, differential diagnosis, targeted intervention, and treatment strategies.

Send a message
How can we help?
We usually respond in a few hours.