handle: 20.500.12079/66547
In questo tempo di crisi, scopriamo la necessità di valori antropologici per guidare la navigazione della nostra specie su questo pianeta. Dal 2000 EcoOne, sezione ecologica dell’Associazione Internazionale New Humanity-NGO (status consultivo generale dell’ECOSOC delle Nazioni Unite, partner ufficiale dell’UNESCO, accreditata presso l’UNEP) ha organizzato numerose conferenze internazionali su temi ambientali. L’incontro del 2020 “Nuove vie verso l’ecologia integrale” ha discusso le sfide economiche, ambientali e sociali della transizione ecologica: alcuni paper selezionati della conferenza sono pubblicati in questo rapporto. In this time of crisis, we discover the need for anthropological values to guide the navigation of our species on this planet. Since 2000 EcoOne, the ecological section of the International New Humanity Association-NGO (general consultative status of the United Nations ECOSOC, official partner of UNESCO, accredited to UNEP) has organized numerous international conferences on environmental issues. The 2020 meeting “New Pathways to Integral Ecology” discussed the economic, environmental and social challenges of the ecological transition: some selected papers from the conference are published in this report.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::c1fb64b69cb9a9014adc3400736b89d3&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::c1fb64b69cb9a9014adc3400736b89d3&type=result"></script>');
-->
</script>
Fast monitoring of water quality is a fundamental part of environmental management and protection, in particular, the possibility of qualitatively and quantitatively determining its contamination at levels that are dangerous for human health, fauna and flora. Among the techniques currently available, Raman spectroscopy and its variant, Surface-Enhanced Raman Spectroscopy (SERS), have several advantages, including no need for sample preparation, quick and easy operation and the ability to operate on the field. This article describes the application of the Raman and SERS technique to liquid samples contaminated with different classes of substances, including nitrates, phosphates, pesticides and their metabolites. The technique was also used for the detection of the air pollutant polycyclic aromatic hydrocarbons and, in particular, benzo(a)pyrene, considered as a reference for the carcinogenicity of the whole class of these compounds. To pre-concentrate the analytes, we applied a methodology based on the well-known coffee-ring effect, which ensures preconcentration of the analytes without any pretreatment of the sample, providing a versatile approach for fast and in-situ detection of water pollutants. The obtained results allowed us to reveal these analytes at low concentrations, close to or lower than their regulatory limits.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218338&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 8 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218338&type=result"></script>');
-->
</script>
handle: 20.500.12079/67407
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::798595a149ec6507ba5687da0d3e5241&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::798595a149ec6507ba5687da0d3e5241&type=result"></script>');
-->
</script>
doi: 10.3390/en14248436
handle: 20.500.12079/59837
In this work, a novel methodology to assess energy performance indicators of productive and economic sectors trough the analysis of the Italian mandatory energy audits database is presented. The updating of sectoral reference energy performance indicators is fundamental for both companies and policy makers—for the formers to evaluate and compare their energy performance with competitors in order to achieve improvements and for the latter to effectively monitor the impact of energy policies. This methodology could be potentially applied to all production sectors, providing key information needed to characterize various production processes from an energy point of view. Awareness of energy efficiency and sectorial benchmarking represent the first necessary steps for companies moving towards energy transition. This paper provides details of the statistical method developed and its application to the NACE 23 division “Manufacturing of other non-metallic mineral products”, with a focus on the cement industry. For this sector, results are presented in terms of specific indicators based on energy source. General results, methodological insights, and validation of the proposed case study are discussed.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248436&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 11 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248436&type=result"></script>');
-->
</script>
handle: 20.500.12079/60367
Future nuclear fusion reactors will produce radioactive waste containing both activation products and Tritium. Since Tritium can potentially be removed from the reactor components, activation products in the materials directly exposed to neutrons are the main source of the radioactive inventory. Activated structures have to be replaced during the operation of future fusion power plants. Moreover, decommissioning will generate activated metals and concrete, requiring treatment and conditioning which, in turn, will generate secondary waste. Significant portions of the waste from maintenance and decommissioning are expected to not meet clearance or low level waste requirements, therefore some underground disposal might be required. To partially address such an issue, strategies are already considered for reducing the amounts of activated waste by adopting recycling, interim storage, and clearance. These imply detailed qualitative and quantitative knowledge of radionuclides occurring in the materials involved, making it pivotal to implement appropriate measurement techniques. Radionuclides with significant impact in the long-term management of activation waste include nuclides hard to measure, given their little-to-none emission of gamma radiation. Those decaying by electron capture are traditionally detected by destructive characterization techniques, either mass spectroscopy or Liquid Scintillation Counting. Given the potential amount of fusion waste produced, non-destructive characterization techniques are preferred since they may require less time and efforts. Here the performance of solid state detectors, for the spectrometry of the X ray counterpart of the Auger electrons and for traditional γ spectrometry, is investigated in terms of the measurement time necessary to collect a statistically significant quantification limit, as a function of the radionuclides activity concentration. An approximated deterministic model is suggested and applied to the case of the future ITER fusion reactor, providing evidence that most of the activation products can be quantified within minutes, and a few hours are needed to quantify the occurrence of the hard to measure radionuclides by means of X spectrometry.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2021.112805&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2021.112805&type=result"></script>');
-->
</script>
handle: 2318/1837634 , 20.500.12327/1418 , 20.500.12079/60225
Hazelnut (Corylus avellana L.) is one of the most important tree nut crops in Europe. Germplasm accessions are conserved in ex situ repositories, located in countries where hazelnut production occurs. In this work, we used ten simple sequence repeat (SSR) markers as the basis to establish a core collection representative of the hazelnut genetic diversity conserved in different European collections. A total of 480 accessions were used: 430 from ex situ collections and 50 landraces maintained on-farm. SSR analysis identified 181 genotypes, that represented our whole hazelnut germplasm collection (WHGC). Four approaches (utilizing MSTRAT, Power Core, and Core Hunter’s single- and multi-strategy) based on the maximization (M) strategy were used to determine the best sampling method. Core Hunter’s multi-strategy, optimizing both allele coverage (Cv) and Cavalli-Sforza and Edwards (Dce) distance with equal weight, outperformed the others and was selected as the best approach. The final core collection (Cv-Dce30) comprised 30 entries (16.6% of genotypes). It recovered all SSR alleles and preserved parameter variations when compared to WHGC. Entries represented all six gene pools obtained from the population structure analysis of WHGC, further confirming the representativeness of Cv-Dce30. Our findings contribute towards improving the conservation and management of European hazelnut genetic resources and could be used to optimize future research by identifying a minimum number of accessions on which to focus.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11295-021-01526-7&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 12 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11295-021-01526-7&type=result"></script>');
-->
</script>
handle: 2318/1900879 , 11577/3461264 , 20.500.12079/61107 , 11583/2928413
The effects of the update of the EUROfusion TIMES Model (ETM) industrial sector to account for the introduction of low-carbon technologies is presented and discussed in this work. ETM is a minimum-cost energy system model aimed at investigating the conditions for the introduction of nuclear fusion in the future electricity mix. The most interesting ETM long-run scenarios (until 2100) must comply with stringent environmental targets to pursue the Below-2-Degrees objective, identified in the Paris Agreement, allowing wide commercial adoption of innovative production processes - currently under test or research - which would almost completely replace well-established fossil-based industrial techniques in the iron and steel, chemicals, non-ferrous metals, non-metallic minerals and pulp and paper sub-sectors. Among them, low-carbon and electrolysis-based processes could open the way to a considerable increase of electricity demand, requiring also clean resources not to undermine sectoral efforts in becoming more environmentally sustainable, and the same does the implementation of CCS technologies. The study shows that the industrial sector contributes to the energy mix decarbonization by relying on CCS technologies, when available, or new low-carbon technologies. The progressive electrification of the industrial sector turns into an increasing final electricity demand which is covered by renewables and nuclear when stringent climate policies are put in place. Despite technological constraints are likely to slow down fusion deployment in the future, a range of scenarios show that nuclear fusion could contribute to generation of carbon-free electricity in the future European energy system.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2021.112880&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 2 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fusengdes.2021.112880&type=result"></script>');
-->
</script>
handle: 2117/363031 , 20.500.12079/60567 , 11583/2919758
The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111312&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 77 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111312&type=result"></script>');
-->
</script>
handle: 2158/1282044 , 11572/360282 , 20.500.12079/61639
At forest sites, phytotoxic tropospheric ozone (O3) can be monitored with continuously operating, active monitors (AM) or passive, cumulative samplers (PM). For the first time, we present evidence that the sustainability of active monitoring is better than that of passive sensors, as the environmental, economic, and social costs are usually lower in the former than in the latter. By using data collected in the field, environmental, social, and economic costs were analyzed. The study considered monitoring sites at three distances from a control station in Italy (30, 400, and 750 km), two forest types (deciduous and Mediterranean evergreen), and three time windows (5, 10, and 20 years of monitoring). AM resulted in more convenience than PM, even after 5 years, in terms of O3 depletion, global warming, and photochemical O3 creation potential, suggesting that passive monitoring of ozone is not environmentally sustainable, especially for long time periods. AM led to savings ranging from a minimum of EUR 9650 in 5 years up to EUR 94,796 in 20 years in evergreen forests. The resulting social cost of PM was always higher than that of AM. The present evaluation will help in the decision process for the set-up of long-term forest monitoring sites dedicated to the protection of forests from O3.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments8100104&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/environments8100104&type=result"></script>');
-->
</script>
Plants are primary resources for oxygen and foods whose production is fundamental for our life. However, diseases and pests may interfere with plant growth and cause a significant reduction of both the quality and quantity of agriculture products. Increasing agricultural productivity is crucial for poverty reduction and food security improvements. For this reason, the 2030 Agenda for Sustainable Development gives a central role to agriculture by promoting a strong technological innovation for advancing sustainable practices at the plant level. To accomplish this aim, recently, wearable sensors and flexible electronics have been extended from humans to plants for measuring elongation, microclimate, and stressing factors that may affect the plant’s healthy growth. Unexpectedly, fiber Bragg gratings (FBGs), which are very popular in health monitoring applications ranging from civil infrastructures to the human body, are still overlooked for the agriculture sector. In this work, for the first time, plant wearables based on FBG technology are proposed for the continuous and simultaneous monitoring of plant growth and environmental parameters (i.e., temperature and humidity) in real settings. The promising results demonstrated the feasibility of FBG-based sensors to work in real situations by holding the promise to advance continuous and accurate plant health growth monitoring techniques.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21196327&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 27 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21196327&type=result"></script>');
-->
</script>