Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Preprint , Article 2022American Physical Society (APS) Authors: Gianluigi Catelani; Luigi Amico; Giampiero Marchegiani;Gianluigi Catelani; Luigi Amico; Giampiero Marchegiani;Designing the spatial profile of the superconducting gap -- gap engineering -- has long been recognized as an effective way of controlling quasiparticles in superconducting devices. In aluminum films, their thickness modulates the gap; therefore, standard fabrication of Al/AlOx/Al Josephson junctions, which relies on overlapping a thicker film on top of a thinner one, always results in gap-engineered devices. Here we reconsider quasiparticle effects in superconducting qubits to explicitly account for the unavoidable asymmetry in the gap on the two sides of a Josephson junction. We find that different regimes can be encountered in which the quasiparticles have either similar densities in the two junction leads, or are largely confined to the lower-gap lead. Qualitatively, for similar densities the qubit's excited state population is lower but its relaxation rate higher than when the quasiparticles are confined; therefore, there is a potential trade-off between two desirable properties in a qubit. Comment: Revised version. To be published in PRX Quantum
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxquantum.3.040338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxquantum.3.040338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article 2022American Physical Society (APS) NSERCNSERCAuthors: Roeland Wiersema; Leonardo Guerini; Juan Felipe Carrasquilla; Leandro Aolita;Roeland Wiersema; Leonardo Guerini; Juan Felipe Carrasquilla; Leandro Aolita;High-connectivity circuits are a major roadblock for current quantum hardware. We propose a hybrid classical-quantum algorithm to simulate such circuits without swap-gate ladders. As main technical tool, we introduce quantum-classical-quantum interfaces. These replace an experimentally problematic gate (e.g. a long-range one) by single-qubit random measurements followed by state-preparations sampled according to a classical quasi-probability simulation of the noiseless gate. Each interface introduces a multiplicative statistical overhead which is remarkably independent of the on-chip qubit distance. Hence, by applying interfaces to the longest range gates in a target circuit, significant reductions in circuit depth and gate infidelity can be attained. We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits and a variational ground-state solver for the transverse-field Ising model on a ring. Our findings provide a versatile toolbox for error-mitigation and circuit boosts tailored for noisy, intermediate-scale quantum computation.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevresearch.4.043221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevresearch.4.043221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Springer Science and Business Media LLC Authors: Phuwadon Chunaksorn; Ekapong Hirunsirisawat; Ratchaphat Nakarachinda; Lunchakorn Tannukij; +1 AuthorsPhuwadon Chunaksorn; Ekapong Hirunsirisawat; Ratchaphat Nakarachinda; Lunchakorn Tannukij; Pitayuth Wongjun;The thermodynamic properties of the de Rham-Gabadadze-Tolley (dRGT) black hole in the asymptotically de Sitter (dS) spacetime are investigated by using R\'enyi entropy. It has been found that the black hole with asymptotically dS spacetime described by the standard Gibbs-Boltzmann statistics cannot be thermodynamically stable. Moreover, there generically exist two horizons corresponding to two thermodynamic systems with different temperatures, leading to a nonequilibrium state. Therefore, in order to obtain the stable dRGT black hole, we use the alternative R\'enyi statistics to analyze the thermodynamics properties in both the separated system approach and the effective system approach. Interestingly, we found that it is possible concurrently obtain positive pressure and volume for the dRGT black hole while it is not for the Schwarzschild-de Sitter (Sch-dS) black hole. Furthermore, the bounds on the nonextensive parameter for which the black hole being thermodynamically stable are determined. In addition, the key differences between the systems described by different approaches, e.g., temperature profiles and types of the Hawking-Page phase transition are pointed out. Comment: 37 pages, 13 figures, V.2 There had been added on the references, and the typos had been corrected
SCOAP3 Repository arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-022-11110-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert SCOAP3 Repository arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-022-11110-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type 2022Oxford University Press (OUP) J Expósito-Márquez; C B Brook; M Huertas-Company; A Di Cintio; A V Macciò; R J J Grand; G Battaglia; E Arjona-Gálvez;Numerical simulations within a cold dark matter (DM) cosmology form halos whose density profiles have a steep inner slope (`cusp'), yet observations of galaxies often point towards a flat central `core'. We develop a convolutional mixture density neural network model to derive a probability density function (PDF) of the inner density slopes of DM halos. We train the network on simulated dwarf galaxies from the NIHAO and AURIGA projects, which include both DM cusps and cores: line-of-sight velocities and 2D spatial distributions of their stars are used as inputs to obtain a PDF representing the probability of predicting a specific inner slope. The model recovers accurately the expected DM profiles: $\sim$82$\%$ of the galaxies have a derived inner slope within $\pm$0.1 of their true value, while $\sim$98$\%$ within $\pm$0.3. We apply our model to four Local Group dwarf spheroidal galaxies and find results consistent with those obtained with the Jeans modelling based code GravSphere: the Fornax dSph has a strong indication of possessing a central DM core, Carina and Sextans have cusps (although the latter with large uncertainties), while Sculptor shows a double peaked PDF indicating that a cusp is preferred, but a core can not be ruled out. Our results show that simulation-based inference with neural networks provide a innovative and complementary method for the determination of the inner matter density profiles in galaxies, which in turn can help constrain the properties of the elusive DM. Comment: 14 pages, 11 figures, submitted to MNRAS. comments welcome
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnras/stac3799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnras/stac3799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022 SpainAmerican Physical Society (APS) NSF | Collaborative Research: U...NSF| Collaborative Research: Understanding deltas through the lens of their channel networksAuthors: Marcus Engsig; Alejandro Tejedor; Yamir Moreno;Marcus Engsig; Alejandro Tejedor; Yamir Moreno;Network robustness is an essential system property to sustain functionality in the face of failures or targeted attacks. Currently, only the connectivity of the nodes resilient to an attack is used to assess robustness. We propose to incorporate the properties of the emerging connectivity of the nodes that are affected by the attack (idle network), which is demonstrated to contain relevant information about network robustness, improving the accuracy of its assessment. Our work shows that the information contained in the idle network offers a potential to generalize models, enabling them to estimate robustness for unseen attacks.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevresearch.4.l042050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevresearch.4.l042050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article 2022Oxford University Press (OUP) Authors: Mohamad Ali-Dib;Mohamad Ali-Dib;Crystalline silicates are found in a large number of comets. These pose a long-standing conundrum for solar system formation models as they can only be created in the inner hot disk at temperatures higher than 800 K, and there is no obvious mechanism to transport them out into the comets formation region. Here we propose that these particles could have formed inside the hydrostatic envelopes surrounding young protoplanets still embedded in the protoplanetary disk. Using a simplified 1D model we investigate the thermal structure of these envelopes, and find that for core masses ranging from 0.08 to 1.5 M_Earth, located anywhere between 1 and 30 AU, the temperature and pressure at the base of the envelopes are high enough to quickly vaporize silicate particles of various sizes. Moreover, if the grain abundance is at least solar, these envelopes become fully convective, allowing for dust ejection across the Bondi radius back into the disk. Amorphous silicates are hence thermally processed into crystalline particles in these envelopes, and then transported back to disk through convective diffusion to be finally incorporated into the cometary building blocks. Comment: Accepted for publication in MNRAS. 4 pages, 2 figures
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnrasl/slad002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnrasl/slad002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022 FranceOxford University Press (OUP) Anna S Saburova; Igor V Chilingarian; Andrea Kulier; Gaspar Galaz; Kirill A Grishin; Anastasia V Kasparova; Victoria Toptun; Ivan Yu Katkov;Rare giant low surface brightness galaxies (gLSBGs) act as a stress test for the current galaxy formation paradigm. To answer the question `How rare are they?' we estimate their volume density in the local Universe. A visual inspection of 120~sq.~deg. covered by deep Subaru Hyper Suprime-Cam data was performed independently by four team members. We detected 42 giant disky systems (30 of them isolated) at $z\leq0.1$ with either $g$-band 27.7~mag~arcsec$^{-2}$ isophotal radius or four disc scalelengths $4h \geq 50$~kpc, 37 of which (including 25 isolated) had low central surface brightness ($μ_{0,g}\ge 22.7$ mag~arcsec$^{-2}$). This corresponds to volume densities of 4.70$\times 10^{-5}$ Mpc$^{-3}$ for all galaxies with giant extended discs and 4.04$\times 10^{-5}$ Mpc$^{-3}$ for gLSBGs, which converts to $\sim $12,700 such galaxies in the entire sky out to $z<0.1$. These estimates agree well with the result of the EAGLE cosmological hydrodynamical simulation. Giant disky galaxies represent the large-size end of the volume density distribution of normal-sized spirals, suggesting the non-exceptional nature of giant discs. We observe a high active galactic nucleus fraction among the newly found gLSBGs. 5 pages, 2 tables, 5 figures, accepted for publication in MNRAS Letters
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnrasl/slad005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnrasl/slad005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022IOP Publishing Authors: Abhishek Sharan; Stephan Lany; Nirpendra Singh;Abhishek Sharan; Stephan Lany; Nirpendra Singh;Two-dimensional Ferrovalley materials with intrinsic valley polarization are rare but highly promising for valley-based nonvolatile random access memory and valley filter. Using Kinetically Limited Minimization (KLM), an unconstrained crystal structure prediction algorithm, and prototype sampling based on first-principles calculations, we have discovered 17 new Ferrovalley materials (rare-earth iodides RI$_2$, where R is a rare-earth element belonging to Sc, Y, or La-Lu, and I is Iodine). The rare-earth iodides are layered and demonstrate 2H, 1T, or 1T$_d$ phase as the ground-state in bulk, analogous to transition metal dichalcogenides (TMDCs). The calculated exfoliation energy of monolayers is comparable to that of graphene and TMDCs, suggesting possible experimental synthesis. The monolayers in the 2H phase exhibit two-dimensional ferromagnetism due to unpaired electrons in $d$ and $f$ orbitals. Throughout the rare-earth series, $d$ bands show valley polarization at $K$ and $\bar{K}$ points in the Brillouin zone near the Fermi level. Due to strong magnetic exchange interaction and spin-orbit coupling, large intrinsic valley polarization in the range of 15-143 meV without external stimuli is observed, which can be tuned and enhanced by applying a biaxial strain. These valleys can selectively be probed and manipulated for information storage and processing, potentially offering superior performance beyond conventional electronics and spintronics. We further show that the 2H ferromagnetic phase of RI$_2$ monolayers possesses non-zero Berry curvature and exhibits the valley Hall effect with considerable anomalous Hall conductivity. Our work will incite exploratory synthesis of the predicted Ferrovalley materials and their application in valleytronics and beyond. Comment: 11 pages, 4 figures
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2053-1583/acab72&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2053-1583/acab72&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022American Physical Society (APS) Authors: Sergi Ramos-Calderer;Sergi Ramos-Calderer;We present efficient methods to interpolate data with a quantum computer that complement uploading techniques and quantum post-processing. The quantum algorithms are supported by the efficient Quantum Fourier Transform (QFT) and classical signal and imaging processing techniques, and open the door of quantum advantage to relevant families of data. We showcase a QFT interpolation method, a Quantum Cosine Transform (QCT) interpolation geared towards natural data, and we improve upon them by utilizing a quantum circuit's capabilities of processing data in superposition. A novel circuit for the QCT is presented. We demonstrate the methods on probability distributions and quantum encoded images, and discuss the precision of the resulting interpolations. Comment: Main: 6 pages, 4 figures. Appendix: 3 pages, 2 figures. Code available online
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physreva.106.062427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physreva.106.062427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022 NetherlandsSpringer Science and Business Media LLC NSF | Research in High Energy P...NSF| Research in High Energy Physics and CosmologyAuthors: Federico Camia; Valentino F. Foit; Alberto Gandolfi; Matthew Kleban;Federico Camia; Valentino F. Foit; Alberto Gandolfi; Matthew Kleban;The Brownian loop soup is a conformally invariant statistical ensemble of random loops in two dimensions characterized by an intensity $\lambda>0$, with central charge $c=2 \lambda$. Recent progress resulted in an analytic form for the four-point function of a class of scalar conformal primary "layering vertex operators" $\mathcal{O}_{\beta}$ with dimensions $(\Delta, \Delta)$, with $\Delta = \frac{\lambda}{10}(1-\cos\beta)$, that compute certain statistical properties of the model. The Virasoro conformal block expansion of the four-point function revealed the existence of a new set of operators with dimensions $(\Delta+ k/3, \Delta + k'/3)$, for all non-negative integers $k, k'$ satisfying $|k-k'| = 0$ mod 3. In this paper we introduce the edge counting field $\mathcal E(z)$ that counts the number of loop boundaries that pass close to the point $z$. We rigorously prove that the $n$-point functions of $\mathcal E$ are well defined and behave as expected for a conformal primary field with dimensions $(1/3, 1/3)$. We analytically compute the four-point function $\langle \mathcal{O}_{\beta}(z_1) \mathcal{O}_{-\beta}(z_2) \mathcal{E}(z_3) \mathcal{E}(z_4) \rangle$ and analyze its conformal block expansion. The operator product expansions of $\mathcal{E} \times \mathcal{E}$ and $\mathcal{E} \times \mathcal{O}_{\beta}$ produce higher-order edge operators with "charge" $\beta$ and dimensions $(\Delta + k/3, \Delta + k/3)$. Hence, we have explicitly identified all scalar primary operators among the new set mentioned above. We also re-compute the central charge by an independent method based on the operator product expansion and find agreement with previous methods. Comment: 40 pages, 2 figures, clarified the relation to the scaling limit of critical percolation, corrected definition (2.3) and equations depending on it, corrected proof of Lemma 2.2, added Lemma A.2
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00220-022-04611-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00220-022-04611-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Preprint , Article 2022American Physical Society (APS) Authors: Gianluigi Catelani; Luigi Amico; Giampiero Marchegiani;Gianluigi Catelani; Luigi Amico; Giampiero Marchegiani;Designing the spatial profile of the superconducting gap -- gap engineering -- has long been recognized as an effective way of controlling quasiparticles in superconducting devices. In aluminum films, their thickness modulates the gap; therefore, standard fabrication of Al/AlOx/Al Josephson junctions, which relies on overlapping a thicker film on top of a thinner one, always results in gap-engineered devices. Here we reconsider quasiparticle effects in superconducting qubits to explicitly account for the unavoidable asymmetry in the gap on the two sides of a Josephson junction. We find that different regimes can be encountered in which the quasiparticles have either similar densities in the two junction leads, or are largely confined to the lower-gap lead. Qualitatively, for similar densities the qubit's excited state population is lower but its relaxation rate higher than when the quasiparticles are confined; therefore, there is a potential trade-off between two desirable properties in a qubit. Comment: Revised version. To be published in PRX Quantum
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxquantum.3.040338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/prxquantum.3.040338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article 2022American Physical Society (APS) NSERCNSERCAuthors: Roeland Wiersema; Leonardo Guerini; Juan Felipe Carrasquilla; Leandro Aolita;Roeland Wiersema; Leonardo Guerini; Juan Felipe Carrasquilla; Leandro Aolita;High-connectivity circuits are a major roadblock for current quantum hardware. We propose a hybrid classical-quantum algorithm to simulate such circuits without swap-gate ladders. As main technical tool, we introduce quantum-classical-quantum interfaces. These replace an experimentally problematic gate (e.g. a long-range one) by single-qubit random measurements followed by state-preparations sampled according to a classical quasi-probability simulation of the noiseless gate. Each interface introduces a multiplicative statistical overhead which is remarkably independent of the on-chip qubit distance. Hence, by applying interfaces to the longest range gates in a target circuit, significant reductions in circuit depth and gate infidelity can be attained. We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits and a variational ground-state solver for the transverse-field Ising model on a ring. Our findings provide a versatile toolbox for error-mitigation and circuit boosts tailored for noisy, intermediate-scale quantum computation.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevresearch.4.043221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevresearch.4.043221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Springer Science and Business Media LLC Authors: Phuwadon Chunaksorn; Ekapong Hirunsirisawat; Ratchaphat Nakarachinda; Lunchakorn Tannukij; +1 AuthorsPhuwadon Chunaksorn; Ekapong Hirunsirisawat; Ratchaphat Nakarachinda; Lunchakorn Tannukij; Pitayuth Wongjun;The thermodynamic properties of the de Rham-Gabadadze-Tolley (dRGT) black hole in the asymptotically de Sitter (dS) spacetime are investigated by using R\'enyi entropy. It has been found that the black hole with asymptotically dS spacetime described by the standard Gibbs-Boltzmann statistics cannot be thermodynamically stable. Moreover, there generically exist two horizons corresponding to two thermodynamic systems with different temperatures, leading to a nonequilibrium state. Therefore, in order to obtain the stable dRGT black hole, we use the alternative R\'enyi statistics to analyze the thermodynamics properties in both the separated system approach and the effective system approach. Interestingly, we found that it is possible concurrently obtain positive pressure and volume for the dRGT black hole while it is not for the Schwarzschild-de Sitter (Sch-dS) black hole. Furthermore, the bounds on the nonextensive parameter for which the black hole being thermodynamically stable are determined. In addition, the key differences between the systems described by different approaches, e.g., temperature profiles and types of the Hawking-Page phase transition are pointed out. Comment: 37 pages, 13 figures, V.2 There had been added on the references, and the typos had been corrected
SCOAP3 Repository arrow_drop_down