Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Article , Preprint , Conference object 2023Embargo end date: 01 Jan 2023arXiv Authors: Saeed, Muhammad Saad; Nawaz, Shah; Khan, Muhammad Haris; Zaheer, Muhammad Zaigham; +3 AuthorsSaeed, Muhammad Saad; Nawaz, Shah; Khan, Muhammad Haris; Zaheer, Muhammad Zaigham; Nandakumar, Karthik; Yousaf, Muhammad Haroon; Mahmood, Arif;With the rapid growth of social media platforms, users are sharing billions of multimedia posts containing audio, images, and text. Researchers have focused on building autonomous systems capable of processing such multimedia data to solve challenging multimodal tasks including cross-modal retrieval, matching, and verification. Existing works use separate networks to extract embeddings of each modality to bridge the gap between them. The modular structure of their branched networks is fundamental in creating numerous multimodal applications and has become a defacto standard to handle multiple modalities. In contrast, we propose a novel single-branch network capable of learning discriminative representation of unimodal as well as multimodal tasks without changing the network. An important feature of our single-branch network is that it can be trained either using single or multiple modalities without sacrificing performance. We evaluated our proposed single-branch network on the challenging multimodal problem (face-voice association) for cross-modal verification and matching tasks with various loss formulations. Experimental results demonstrate the superiority of our proposed single-branch network over the existing methods in a wide range of experiments. Code: https://github.com/msaadsaeed/SBNet Comment: Accepted at ICASSP 2023
arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/icassp...Conference object . 2023License: https://doi.org/10.15223/policy-029Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.06129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/icassp...Conference object . 2023License: https://doi.org/10.15223/policy-029Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.06129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Authors: H. B. Benaoum; Genly Leon; A. Övgün; H. Quevedo;H. B. Benaoum; Genly Leon; A. Övgün; H. Quevedo;We investigate the inflation driven by a nonlinear electromagnetic field based on an NLED lagrangian density ${\cal L}_{\text{nled}} = - {F} f \left( {F} \right)$, where $f \left( {F}\right)$ is a general function depending on ${F}$. We first formulate an $f$-NLED cosmological model with a more general function $f \left( {F}\right)$ and show that all NLED models can be expressed in this framework; then, we investigate in detail two interesting examples of the function $f \left( {F}\right)$. We present our phenomenological model based on a new Lagrangian for NLED. Solutions to the field equations with the physical properties of the cosmological parameters are obtained. We show that the early Universe had no Big-Bang singularity, which accelerated in the past. We also investigate the qualitative implications of NLED by studying the inflationary parameters, like the slow-roll parameters, spectral index $n_s$, and tensor-to-scalar ratio $r$, and compare our results with observational data. Detailed phase-space analysis of our NLED cosmological model is performed with and without matter source. As a first approach, we consider the motion of a particle of unit mass in an effective potential. Our systems correspond to fast-slow systems for physical values of the electromagnetic field and the energy densities at the end of inflation. We analyze a complementary system using Hubble-normalized variables to investigate the cosmological evolution before the matter-dominated Universe. Comment: 27 pages, 13 compound figures
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-023-11481-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-023-11481-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023arXiv Authors: Marcella Astrid; Muhammad Zaigham Zaheer; Seung-Ik Lee;Marcella Astrid; Muhammad Zaigham Zaheer; Seung-Ik Lee;Due to the rarity of anomalous events, video anomaly detection is typically approached as one-class classification (OCC) problem. Typically in OCC, an autoencoder (AE) is trained to reconstruct the normal only training data with the expectation that, in test time, it can poorly reconstruct the anomalous data. However, previous studies have shown that, even trained with only normal data, AEs can often reconstruct anomalous data as well, resulting in a decreased performance. To mitigate this problem, we propose to limit the anomaly reconstruction capability of AEs by incorporating pseudo anomalies during the training of an AE. Extensive experiments using five types of pseudo anomalies show the robustness of our training mechanism towards any kind of pseudo anomaly. Moreover, we demonstrate the effectiveness of our proposed pseudo anomaly based training approach against several existing state-ofthe-art (SOTA) methods on three benchmark video anomaly datasets, outperforming all the other reconstruction-based approaches in two datasets and showing the second best performance in the other dataset.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.10704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.10704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023 FrancearXiv Jean-Eric Campagne; François Lanusse; Joe Zuntz; Alexandre Boucaud; Santiago Casas; Minas Karamanis; David Kirkby; Denise Lanzieri; Austin Peel; Yin Li;International audience; We present jax-cosmo, a library for automatically differentiable cosmological theory calculations. It uses the JAX library, which has created a new coding ecosystem, especially in probabilistic programming. As well as batch acceleration, just-in-time compilation, and automatic optimization of code for different hardware modalities (CPU, GPU, TPU), JAX exposes an automatic differentiation (autodiff) mechanism. Thanks to autodiff, jax-cosmo gives access to the derivatives of cosmological likelihoods with respect to any of their parameters, and thus enables a range of powerful Bayesian inference algorithms, otherwise impractical in cosmology, such as Hamiltonian Monte Carlo and Variational Inference. In its initial release, jax-cosmo implements background evolution, linear and non-linear power spectra (using halofit or the Eisenstein and Hu transfer function), as well as angular power spectra with the Limber approximation for galaxy and weak lensing probes, all differentiable with respect to the cosmological parameters and their other inputs. We illustrate how autodiff can be a game-changer for common tasks involving Fisher matrix computations, or full posterior inference with gradient-based techniques. In particular, we show how Fisher matrices are now fast, exact, no longer require any fine tuning, and are themselves differentiable. Finally, using a Dark Energy Survey Year 1 3x2pt analysis as a benchmark, we demonstrate how jax-cosmo can be combined with Probabilistic Programming Languages to perform posterior inference with state-of-the-art algorithms including a No U-Turn Sampler, Automatic Differentiation Variational Inference,and Neural Transport HMC. We further demonstrate that Normalizing Flows using Neural Transport are a promising methodology for model validation in the early stages of analysis.
The Open Journal of ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2302.05163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Open Journal of ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2302.05163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023arXiv NSERCNicolas Delnour; Alexei Bissonnette; Hichem Eleuch; Richard MacKenzie; Michael Hilke;In this work, we propose a novel qubit-based sensor with the ability to characterize topological edge states in low-dimensional systems. A composite system is studied, consisting of a qubit coupled to a topologically nontrivial Su-Schrieffer-Heeger chain between semi-infinite lead channels. This qubit probe utilizes decoherence dynamics which, under a weak-coupling framework, are related to the environment's local density of states. Qubit decoherence rate measurements along a sample therefore provide the means to extract edge state profiles. The environment's influence on the qubit's subspace is captured by an effective projective treatment, leading to an analytical decoherence rate expression. We demonstrate that the scanning qubit probe identifies and yields a complete spatial characterization of the topological edge states within the composite system. Comment: 9 pages, 5 figures
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2302.13771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2302.13771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article 2023 United States EnglishEDP Sciences S. Howard; T. Guillot; M. Bazot; Y. Miguel; D. J. Stevenson; E. Galanti; Y. Kaspi; W. B. Hubbard; B. Militzer; R. Helled; N. Nettelmann; B. Idini; S. Bolton;Context. The Juno mission has provided measurements of Jupiter’s gravity field with an outstanding level of accuracy, leading to better constraints on the interior of the planet. Improving our knowledge of the internal structure of Jupiter is key to understanding its formation and evolution but is also important in the framework of exoplanet exploration. Aims. In this study, we investigated the differences between the state-of-the-art equations of state and their impact on the properties of interior models. Accounting for uncertainty on the hydrogen and helium equation of state, we assessed the span of the interior features of Jupiter. Methods. We carried out an extensive exploration of the parameter space and studied a wide range of interior models using Markov chain Monte Carlo simulations. To consider the uncertainty on the equation of state, we allowed for modifications of the equation of state in our calculations. Results. Our models harbour a dilute core and indicate that Jupiter’s internal entropy is higher than what is usually assumed from the Galileo probe measurements. We obtain solutions with extended dilute cores, but contrary to other recent interior models of Jupiter, we also obtain models with small dilute cores. The dilute cores in such solutions extend to ~20% of Jupiter’s mass, leading to better agreement with formation–evolution models. Conclusions. We conclude that the equations of state used in Jupiter models have a crucial effect on the inferred structure and composition. Further explorations of the behaviour of hydrogen–helium mixtures at the pressure and temperature conditions in Jupiter will help to constrain the interior of the planet, and therefore its origin.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2302.09082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2302.09082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2023 SwitzerlandElsevier BV Authors: Matteo Salvador; Francesco Regazzoni; Luca Dede’; Alfio Quarteroni;Matteo Salvador; Francesco Regazzoni; Luca Dede’; Alfio Quarteroni;Background and objectives: Parameter estimation and uncertainty quantification are crucial in computa-tional cardiology, as they enable the construction of digital twins that faithfully replicate the behavior of physical patients. Many model parameters regarding cardiac electromechanics and cardiovascular hemo-dynamics need to be robustly fitted by starting from a few, possibly non-invasive, noisy observations. Moreover, short execution times and a small amount of computational resources are required for the effective clinical translation. Methods: In the framework of Bayesian statistics, we combine Maximum a Posteriori estimation and Hamiltonian Monte Carlo to find an approximation of model parameters and their posterior distributions. Fast simulations and minimal memory requirements are achieved by using an accurate and geometry -specific Artificial Neural Network surrogate model for the cardiac function, matrix-free methods, auto-matic differentiation and automatic vectorization. Furthermore, we account for the surrogate modeling error and measurement error. Results: We perform three different in silico test cases, ranging from the ventricular function to the en-tire cardiocirculatory system, involving whole-heart mechanics, arterial and venous hemodynamics. By employing a single central processing unit on a standard laptop, we attain highly accurate estimations for all model parameters in short computational times. Furthermore, we obtain posterior distributions that contain the true values inside the 90% credibility regions. Conclusions: Many model parameters regarding the entire cardiovascular system can be fastly and ro-bustly identified with minimal hardware requirements. This can be achieved when a small amount of non-invasive data is available and when high levels of signal-to-noise ratio are present in the quanti-ties of interest. With these features, our approach meets the requirements for clinical exploitation, while being compliant with Green Computing practices.
arXiv.org e-Print Ar... arrow_drop_down Infoscience - EPFL scientific publicationsOther literature typeData sources: Infoscience - EPFL scientific publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cmpb.2023.107402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down Infoscience - EPFL scientific publicationsOther literature typeData sources: Infoscience - EPFL scientific publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cmpb.2023.107402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023 EnglishAuthors: Su, Jinyan; Zhao, Changhong; Wang, Di;Su, Jinyan; Zhao, Changhong; Wang, Di;In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) in Euclidean and general $\ell_p^d$ spaces. Specifically, we focus on three settings that are still far from well understood: (1) DP-SCO over a constrained and bounded (convex) set in Euclidean space; (2) unconstrained DP-SCO in $\ell_p^d$ space; (3) DP-SCO with heavy-tailed data over a constrained and bounded set in $\ell_p^d$ space. For problem (1), for both convex and strongly convex loss functions, we propose methods whose outputs could achieve (expected) excess population risks that are only dependent on the Gaussian width of the constraint set rather than the dimension of the space. Moreover, we also show the bound for strongly convex functions is optimal up to a logarithmic factor. For problems (2) and (3), we propose several novel algorithms and provide the first theoretical results for both cases when $1
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.18047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.18047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023arXiv Cui, Kaiwen; Yu, Yingchen; Zhan, Fangneng; Liao, Shengcai; Lu1, Shijian; Xing, Eric;Generative Adversarial Networks (GANs) rely heavily on large-scale training data for training high-quality image generation models. With limited training data, the GAN discriminator often suffers from severe overfitting which directly leads to degraded generation especially in generation diversity. Inspired by the recent advances in knowledge distillation (KD), we propose KD-DLGAN, a knowledge-distillation based generation framework that introduces pre-trained vision-language models for training effective data-limited generation models. KD-DLGAN consists of two innovative designs. The first is aggregated generative KD that mitigates the discriminator overfitting by challenging the discriminator with harder learning tasks and distilling more generalizable knowledge from the pre-trained models. The second is correlated generative KD that improves the generation diversity by distilling and preserving the diverse image-text correlation within the pre-trained models. Extensive experiments over multiple benchmarks show that KD-DLGAN achieves superior image generation with limited training data. In addition, KD-DLGAN complements the state-of-the-art with consistent and substantial performance gains.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.17158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.17158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023arXiv Authors: Alexander G. Ororbia;Alexander G. Ororbia;We develop a novel credit assignment algorithm for information processing with spiking neurons without requiring feedback synapses. Specifically, we propose an event-driven generalization of the forward-forward and the predictive forward-forward learning processes for a spiking neural system that iteratively processes sensory input over a stimulus window. As a result, the recurrent circuit computes the membrane potential of each neuron in each layer as a function of local bottom-up, top-down, and lateral signals, facilitating a dynamic, layer-wise parallel form of neural computation. Unlike spiking neural coding, which relies on feedback synapses to adjust neural electrical activity, our model operates purely online and forward in time, offering a promising way to learn distributed representations of sensory data patterns with temporal spike signals. Notably, our experimental results on several pattern datasets demonstrate that the even-driven forward-forward (ED-FF) framework works well for training a dynamic recurrent spiking system capable of both classification and reconstruction.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.18187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.18187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article , Preprint , Conference object 2023Embargo end date: 01 Jan 2023arXiv Authors: Saeed, Muhammad Saad; Nawaz, Shah; Khan, Muhammad Haris; Zaheer, Muhammad Zaigham; +3 AuthorsSaeed, Muhammad Saad; Nawaz, Shah; Khan, Muhammad Haris; Zaheer, Muhammad Zaigham; Nandakumar, Karthik; Yousaf, Muhammad Haroon; Mahmood, Arif;With the rapid growth of social media platforms, users are sharing billions of multimedia posts containing audio, images, and text. Researchers have focused on building autonomous systems capable of processing such multimedia data to solve challenging multimodal tasks including cross-modal retrieval, matching, and verification. Existing works use separate networks to extract embeddings of each modality to bridge the gap between them. The modular structure of their branched networks is fundamental in creating numerous multimodal applications and has become a defacto standard to handle multiple modalities. In contrast, we propose a novel single-branch network capable of learning discriminative representation of unimodal as well as multimodal tasks without changing the network. An important feature of our single-branch network is that it can be trained either using single or multiple modalities without sacrificing performance. We evaluated our proposed single-branch network on the challenging multimodal problem (face-voice association) for cross-modal verification and matching tasks with various loss formulations. Experimental results demonstrate the superiority of our proposed single-branch network over the existing methods in a wide range of experiments. Code: https://github.com/msaadsaeed/SBNet Comment: Accepted at ICASSP 2023
arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/icassp...Conference object . 2023License: https://doi.org/10.15223/policy-029Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.06129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/icassp...Conference object . 2023License: https://doi.org/10.15223/policy-029Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.06129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Authors: H. B. Benaoum; Genly Leon; A. Övgün; H. Quevedo;H. B. Benaoum; Genly Leon; A. Övgün; H. Quevedo;We investigate the inflation driven by a nonlinear electromagnetic field based on an NLED lagrangian density ${\cal L}_{\text{nled}} = - {F} f \left( {F} \right)$, where $f \left( {F}\right)$ is a general function depending on ${F}$. We first formulate an $f$-NLED cosmological model with a more general function $f \left( {F}\right)$ and show that all NLED models can be expressed in this framework; then, we investigate in detail two interesting examples of the function $f \left( {F}\right)$. We present our phenomenological model based on a new Lagrangian for NLED. Solutions to the field equations with the physical properties of the cosmological parameters are obtained. We show that the early Universe had no Big-Bang singularity, which accelerated in the past. We also investigate the qualitative implications of NLED by studying the inflationary parameters, like the slow-roll parameters, spectral index $n_s$, and tensor-to-scalar ratio $r$, and compare our results with observational data. Detailed phase-space analysis of our NLED cosmological model is performed with and without matter source. As a first approach, we consider the motion of a particle of unit mass in an effective potential. Our systems correspond to fast-slow systems for physical values of the electromagnetic field and the energy densities at the end of inflation. We analyze a complementary system using Hubble-normalized variables to investigate the cosmological evolution before the matter-dominated Universe. Comment: 27 pages, 13 compound figures
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-023-11481-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-023-11481-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023arXiv Authors: Marcella Astrid; Muhammad Zaigham Zaheer; Seung-Ik Lee;Marcella Astrid; Muhammad Zaigham Zaheer; Seung-Ik Lee;Due to the rarity of anomalous events, video anomaly detection is typically approached as one-class classification (OCC) problem. Typically in OCC, an autoencoder (AE) is trained to reconstruct the normal only training data with the expectation that, in test time, it can poorly reconstruct the anomalous data. However, previous studies have shown that, even trained with only normal data, AEs can often reconstruct anomalous data as well, resulting in a decreased performance. To mitigate this problem, we propose to limit the anomaly reconstruction capability of AEs by incorporating pseudo anomalies during the training of an AE. Extensive experiments using five types of pseudo anomalies show the robustness of our training mechanism towards any kind of pseudo anomaly. Moreover, we demonstrate the effectiveness of our proposed pseudo anomaly based training approach against several existing state-ofthe-art (SOTA) methods on three benchmark video anomaly datasets, outperforming all the other reconstruction-based approaches in two datasets and showing the second best performance in the other dataset.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.10704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.2303.10704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023 FrancearXiv Jean-Eric Campagne; François Lanusse; Joe Zuntz; Alexandre Boucaud; Santiago Casas; Minas Karamanis; David Kirkby; Denise Lanzieri; Austin Peel; Yin Li;International audience; We present jax-cosmo, a library for automatically differentiable cosmological theory calculations. It uses the JAX library, which has created a new coding ecosystem, especially in probabilistic programming. As well as batch acceleration, just-in-time compilation, and automatic optimization of code for different hardware modalities (CPU, GPU, TPU), JAX exposes an automatic differentiation (autodiff) mechanism. Thanks to autodiff, jax-cosmo gives access to the derivatives of cosmological likelihoods with respect to any of their parameters, and thus enables a range of powerful Bayesian inference algorithms, otherwise impractical in cosmology, such as Hamiltonian Monte Carlo and Variational Inference. In its initial release, jax-cosmo implements background evolution, linear and non-linear power spectra (using halofit or the Eisenstein and Hu transfer function), as well as angular power spectra with the Limber approximation for galaxy and weak lensing probes, all differentiable with respect to the cosmological parameters and their other inputs. We illustrate how autodiff can be a game-changer for common tasks involving Fisher matrix computations, or full posterior inference with gradient-based techniques. In particular, we show how Fisher matrices are now fast, exact, no longer require any fine tuning, and are themselves differentiable. Finally, using a Dark Energy Survey Year 1 3x2pt analysis as a benchmark, we demonstrate how jax-cosmo can be combined with Probabilistic Programming Languages to perform posterior inference with state-of-the-art algorithms including a No U-Turn Sampler, Automatic Differentiation Variational Inference,and Neural Transport HMC. We further demonstrate that Normalizing Flows using Neural Transport are a promising methodology for model validation in the early stages of analysis.
The Open Journal of ... arrow_drop_down