Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Preprint , Article 2021IOP Publishing Authors: Vladimir Sokolovsky; Leonid Prigozhin;Vladimir Sokolovsky; Leonid Prigozhin;Numerical simulation of superconducting devices is a powerful tool for understanding the principles of their work and improving their design. We present a new pseudospectral method for two-dimensional magnetization and transport current superconducting strip problems with an arbitrary current-voltage relation, spatially inhomogeneous strips, and strips in a nonuniform applied field. The method is based on the bivariate expansions in Chebyshev polynomials and Hermite functions. It can be used for numerical modeling magnetic flux pumps of different types and investigating AC losses in coated conductors with local defects. Using a realistic two-dimensional version of the superconducting dynamo benchmark problem as an example, we showed that our new method is a competitive alternative to finite element methods. Comment: 20 pages
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6668/ac3b63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6668/ac3b63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2021MDPI AG Barun Halder; Suranjana Ghosh; Pradosh Basu; Jayanta Bera; Boris Malomed; Utpal Roy;We address dynamics of Bose-Einstein condensates (BECs) loaded into a one-dimensional four-color optical lattice (FOL) potential with commensurate wavelengths and tunable intensities. This configuration lends system-specific symmetry properties. The analysis identifies specific multi-parameter forms of the FOL potential which admits exact solitary-wave solutions. This newly found class of potentials includes more particular species, such as frustrated double-well superlattices, and bi-chromatic and three-color lattices, which are subject to respective symmetry constraints. Our exact solutions provide options for controllable positioning of density maxima of the localized patterns, and tunable Anderson-like localization in the frustrated potential. A numerical analysis is performed to establish dynamical stability and structural stability of the obtained solutions, which makes them relevant for experimental realization. The newly found solutions offer applications to the design of schemes for quantum simulations and processing quantum information. Comment: 7 pages, 6 figures
Symmetry arrow_drop_down SymmetryOther literature type . Article . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym14010049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Symmetry arrow_drop_down SymmetryOther literature type . Article . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym14010049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2021Mathematical Sciences Publishers NSERC, EC | SYMPTOPODYNQUANT, NSF | Research in MathematicsNSERC ,EC| SYMPTOPODYNQUANT ,NSF| Research in MathematicsAuthors: Asaf Kislev; Egor Shelukhin;Asaf Kislev; Egor Shelukhin;We investigate the relations between algebraic structures, spectral invariants, and persistence modules, in the context of monotone Lagrangian Floer homology with Hamiltonian term. Firstly, we use the newly introduced method of filtered continuation elements to prove that the Lagrangian spectral norm controls the barcode of the Hamiltonian perturbation of the Lagrangian submanifold, up to shift, in the bottleneck distance. Moreover, we show that it satisfies Chekanov type low-energy intersection phenomena, and non-degeneracy theorems. Secondly, we introduce a new averaging method for bounding the spectral norm from above, and apply it to produce precise uniform bounds on the Lagrangian spectral norm in certain closed symplectic manifolds. Finally, by using the theory of persistence modules, we prove that our bounds are in fact sharp in some cases. Along the way we produce a new calculation of the Lagrangian quantum homology of certain Lagrangian submanifolds, and answer a question of Usher. Comment: 71 pages, 6 figures
Geometry & Topology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2140/gt.2021.25.3257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geometry & Topology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2140/gt.2021.25.3257&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2021Informa UK Limited Authors: Sergey Malev; Roman Yavich; Roee Shayer;Sergey Malev; Roman Yavich; Roee Shayer;In this paper we prove the generalized Kaplansky conjecture for the Jordan algebras of the type $J_n$ in particular for self adjoint $2\times 2$ matrices over $\R$, over $\C$, $\HH$ and $\Oct$. In fact, we prove that the image of multilinear polynomial must be either $\{0\}$, $\mathbb{R}$, the space of pure elements $V$, or $J_n$.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00927872.2021.2021221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00927872.2021.2021221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article 2021Research Square Platform LLC Authors: Matan Rusanovsky; Gal Oren; Ofer Beeri;Matan Rusanovsky; Gal Oren; Ofer Beeri;pmid: 35314725
pmc: PMC8938431
Metallography is crucial for a proper assessment of material's properties. It involves mainly the investigation of spatial distribution of grains and the occurrence and characteristics of inclusions or precipitates. This work presents an holistic artificial intelligence model for Anomaly Detection that automatically quantifies the degree of anomaly of impurities in alloys. We suggest the following examination process: (1) Deep semantic segmentation is performed on the inclusions (based on a suitable metallographic database of alloys and corresponding tags of inclusions), producing inclusions masks that are saved into a separated database. (2) Deep image inpainting is performed to fill the removed inclusions parts, resulting in 'clean' metallographic images, which contain the background of grains. (3) Grains' boundaries are marked using deep semantic segmentation (based on another metallographic database of alloys), producing boundaries that are ready for further inspection on the distribution of grains' size. (4) Deep anomaly detection and pattern recognition is performed on the inclusions masks to determine spatial, shape and area anomaly detection of the inclusions. Finally, the system recommends to an expert on areas of interests for further examination. The performance of the model is presented and analyzed based on few representative cases. Although the models presented here were developed for metallography analysis, most of them can be generalized to a wider set of problems in which anomaly detection of geometrical objects is desired. All models as well as the data-sets that were created for this work, are publicly available at https://github.com/Scientific-Computing-Lab-NRCN/MLography. Comment: arXiv admin note: substantial text overlap with arXiv:2003.04226 Same text as last submission, changed the author list to correspond to the pdf
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1184142/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-1184142/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article , Other literature type 2021Oxford University Press (OUP) NIH | Alzheimer's Disease Patie...NIH| Alzheimer's Disease Patient Registry (ADPR/ACT)Authors: Daniel Nevo; Malka Gorfine;Daniel Nevo; Malka Gorfine;An emerging challenge for time-to-event data is studying semi-competing risks, namely when two event times are of interest: a non-terminal event time (e.g. age at disease diagnosis), and a terminal event time (e.g. age at death). The non-terminal event is observed only if it precedes the terminal event, which may occur before or after the non-terminal event. Studying treatment or intervention effects on the dual event times is complicated because for some units, the non-terminal event may occur under one treatment value but not under the other. Until recently, existing approaches (e.g., the survivor average causal effect) generally disregarded the time-to-event nature of both outcomes. More recent research focused on principal strata effects within time-varying populations under Bayesian approaches. In this paper, we propose alternative non time-varying estimands, based on a single stratification of the population. We present a novel assumption utilizing the time-to-event nature of the data, which is weaker than the often-invoked monotonicity assumption. We derive results on partial identifiability, suggest a sensitivity analysis approach, and give conditions under which full identification is possible. Finally, we present non-parametric and semi-parametric estimation methods for right-censored data. Comment: 35 pages, 3 figure, 3 tables
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biostatistics/kxab049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biostatistics/kxab049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2021 United StatesOxford University Press (OUP) NSF | Unraveling the Mystery of...NSF| Unraveling the Mystery of Fast Radio BurstsAuthors: Paz Beniamini; Pawan Kumar; Ramesh Narayan;Paz Beniamini; Pawan Kumar; Ramesh Narayan;We describe how the observed polarization properties of an astronomical object are related to its intrinsic polarization properties and the finite temporal and spectral resolutions of the observing device. Moreover, we discuss the effect that a scattering screen, with non-zero magnetic field, between the source and observer has on the observed polarization properties. We show that the polarization properties are determined by the ratio of observing bandwidth and coherence bandwidth of the scattering screen and the ratio of temporal resolution of the instrument and the variability time of screen, as long as the length over which the Faraday rotation induced by the screen changes by $\sim\pi$ is smaller than the size of the screen visible to the observer. We describe the conditions under which a source that is 100\% linearly polarized intrinsically might be observed as partially depolarized, and how the source's temporal variability can be distinguished from the temporal variability induced by the scattering screen. In general, linearly polarized waves passing through a magnetized scattering screen can develop a significant circular polarization. We apply the work to the observed polarization properties of a few fast radio bursts (FRBs), and outline potential applications to pulsars. Comment: 15 pages, 9 figures. Accepted for publication in MNRAS
Caltech Authors arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnras/stab3730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Caltech Authors arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/mnras/stab3730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article 2021American Physical Society (APS) Authors: Georgia T. Papadakis; Meir Orenstein; Eli Yablonovitch; Shanhui Fan;Georgia T. Papadakis; Meir Orenstein; Eli Yablonovitch; Shanhui Fan;We evaluate near-field thermophotovoltaic (TPV) energy conversion systems focusing in particular on their open-circuit voltage (Voc). Unlike previous analyses based largely on numerical simulations with fluctuational electrodynamics, here, we develop an analytic model that captures the physics of near-field TPV systems and can predict their performance metrics. Using our model, we identify two important opportunities of TPV systems operating in the near-field. First, we show analytically that enhancement of radiative recombination is a natural consequence of operating in the near-field. Second, we note that, owing to photon recycling and minimal radiation leakage in near-field operation, the PV cell used in near-field TPV systems can be much thinner compared to those used in solar PV systems. Since non-radiative recombination is a volumetric effect, use of a thinner cell reduces non-radiative losses per unit area. The combination of these two opportunities leads to increasingly large values of Voc as the TPV vacuum gap decreases. Hence, although operation in the near-field was previously perceived to be beneficial for electrical power density enhancement, here, we emphasize that thin-film near-field TPVs are also significantly advantageous in terms of Voc and consequently conversion efficiency as well as power density. We provide numerical results for an InAs-based thin-film TPV that exhibits efficiency > 50% at an emitter temperature as low as 1100 K. 15 pages, 8 figures
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevapplied.16.064063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevapplied.16.064063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article 2021AIP Publishing EC | Real-PIM-SystemEC| Real-PIM-SystemWei Wang; Loai Danial; Eric Herbelin; Barak Hoffer; Batel Oved; Tzofnat Greenberg-Toledo; Evgeny Pikhay; Yakov Roizin; Shahar Kvatinsky;Y-Flash memristors utilize the mature technology of single polysilicon floating gate non-volatile memories (NVM). It can be operated in a two-terminal configuration similar to the other emerging memristive devices, i.e., resistive random-access memory (RRAM), phase-change memory (PCM), etc. Fabricated in production complementary metal-oxide-semiconductor (CMOS) technology, Y-Flash memristors allow excellent repro-ducibility reflected in high neuromorphic products yields. Working in the subthreshold region, the device can be programmed to a large number of fine-tuned intermediate states in an analog fashion and allows low readout currents (1 nA ~ 5 $\mu$ A). However, currently, there are no accurate models to describe the dynamic switching in this type of memristive device and account for multiple operational configurations. In this paper, we provide a physical-based compact model that describes Y-Flash memristor performance both in DC and AC regimes, and consistently describes the dynamic program and erase operations. The model is integrated into the commercial circuit design tools and is ready to be used in applications related to neuromorphic computation.
arXiv.org e-Print Ar... arrow_drop_down Applied Physics LettersOther literature type . Article . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0069116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down Applied Physics LettersOther literature type . Article . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0069116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2021American Association for the Advancement of Science (AAAS) FCT | D4FCT| D4Gal Ness; Manolo R. Lam; Wolfgang Alt; Dieter Meschede; Yoav Sagi; Andrea Alberti;Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in time. Two well-known quantum speed limits are the Mandelstam-Tamm and the Margolus-Levitin bounds, which relate the maximum speed of evolution to the system’s energy uncertainty and mean energy, respectively. Here, we test concurrently both limits in a multilevel system by following the motion of a single atom in an optical trap using fast matter wave interferometry. We find two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times. We take a geometric approach to quantify the deviation from the speed limit, measuring how much the quantum evolution deviates from the geodesic path in the Hilbert space of the multilevel system. Our results are important to understand the ultimate performance of quantum computing devices and related advanced quantum technologies. We experimentally investigate quantum speed limits and their crossover in a multilevel system by fast matter wave interferometry. Description
Europe PubMed Centra... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abj9119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Europe PubMed Centra... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abj9119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Preprint , Article 2021IOP Publishing Authors: Vladimir Sokolovsky; Leonid Prigozhin;Vladimir Sokolovsky; Leonid Prigozhin;Numerical simulation of superconducting devices is a powerful tool for understanding the principles of their work and improving their design. We present a new pseudospectral method for two-dimensional magnetization and transport current superconducting strip problems with an arbitrary current-voltage relation, spatially inhomogeneous strips, and strips in a nonuniform applied field. The method is based on the bivariate expansions in Chebyshev polynomials and Hermite functions. It can be used for numerical modeling magnetic flux pumps of different types and investigating AC losses in coated conductors with local defects. Using a realistic two-dimensional version of the superconducting dynamo benchmark problem as an example, we showed that our new method is a competitive alternative to finite element methods. Comment: 20 pages
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6668/ac3b63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6668/ac3b63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2021MDPI AG Barun Halder; Suranjana Ghosh; Pradosh Basu; Jayanta Bera; Boris Malomed; Utpal Roy;We address dynamics of Bose-Einstein condensates (BECs) loaded into a one-dimensional four-color optical lattice (FOL) potential with commensurate wavelengths and tunable intensities. This configuration lends system-specific symmetry properties. The analysis identifies specific multi-parameter forms of the FOL potential which admits exact solitary-wave solutions. This newly found class of potentials includes more particular species, such as frustrated double-well superlattices, and bi-chromatic and three-color lattices, which are subject to respective symmetry constraints. Our exact solutions provide options for controllable positioning of density maxima of the localized patterns, and tunable Anderson-like localization in the frustrated potential. A numerical analysis is performed to establish dynamical stability and structural stability of the obtained solutions, which makes them relevant for experimental realization. The newly found solutions offer applications to the design of schemes for quantum simulations and processing quantum information. Comment: 7 pages, 6 figures
Symmetry arrow_drop_down SymmetryOther literature type . Article . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym14010049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Symmetry arrow_drop_down SymmetryOther literature type . Article . 2021