handle: 11012/247738
This thesis focuses on utilizing image data of tree trunk damage to train a classifier for recognizing species of tree pests that caused this damage. The classifier is designed as a convolutional neural network. To successfully train the model, a preprocessing step - the sub-image generator - was employed before the classifier. This generator creates training data of suitable dimensions by cropping from the original data. The resulting data retains important details for network training. Two methods for generating training sub-images were proposed for the sub-image generator - the Grid division method and the Elliptic division method. Both of these methods can be successfully used to train the classifier for tree pest recognition based on image data of tree damage with comparable model accuracy. The Elliptic division method is more flexible and less time-consuming for preprocessing training data. Tato diplomová práce se věnuje využití obrazových dat poškození kmene stromu k natrénování klasifikátoru pro rozpoznávání druhů škůdců stromů, které toto poškození způsobili. Klasifikátor je navrhnut jako konvoluční neuronová síť. Pro úspěšné natrénování modelu byl klasifikátoru předřazen preprocesingový krok – sub-image generátor. Tento generátor vytváří tréninková data o vhodných rozměrech pomocí výřezů z původních dat. Takto vzniklá data zachovávají důležité detaily pro trénování sítě. Pro sub-image generátor byly navrženy dvě metody vytváření trénovacích pod-obrazů – Grid division method a Elliptic division method. Obě tyto metody lze úspěšně použít pro natrénování klasifikátoru škůdců stromů na základě obrazových dat poškození stromu se srovnatelnou přesností modelu. Metoda Elliptic division je flexibilnější a méně časově náročná na preprocesing trénovacích dat. A
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/247738&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/247738&type=result"></script>');
-->
</script>
handle: 11012/56493
Hlavním cílem této práce bylo navrhnout a vytvořit systém sledování osob s aplikací v oboru bezpečnosti nebo pro analýzu chování zákazníka v obchodě. Systém byl úspěšně implementován pomocí metod KLT trekování, AdaBoost klasifikátoru a datové asociace pomocí Markovských řetězců a metody Monte Carlo. Implementace umožňuje analýzu pohybu lidí ve vnitřních i vnějších prostorech. The main goal of this thesis is to develop multi-target tracking system for use in field of security surveillance or for customer behavior analysis. The system was successfully implemented using KLT tracking, AdaBoost classifier and Markov Chain Monte Carlo data association. It is able to perform analysis of motion of people in both outdoor and indoor environment. C
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/56493&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/56493&type=result"></script>');
-->
</script>
handle: 11012/205503
This thesis is researching workable solutions to the problem of classification of thorax disease on chest x-ray images using artificial intelligence. For a better understanding of the problem, the first chapters explain the basic convolutional neural network and its advantages and disadvantages. Based on these first explanations, two neural networks which are expanding on the concept of the convolutional neural network are chosen. Those are capsulated network and residual network both explained further in their respective sections with their advantages and disadvantages. Residual network and Capsulated network are implemented using programming language python and framework TensorFlow with Keras library, both with their respective chapters. At the end of this thesis, you can find results and conclusion. Tato práce se zabývá výzkumem použitelných řešení pro problém klasifikace onemocnění hrudníku na rentgenových snímcích hrudníku pomocí umělé inteligence. Pro lepší pochopení problému jsou v prvních kapitolách vysvětleny základní konvoluční neuronové sítě a jejich výhody a nevýhody. Na základě těchto prvních vysvětlení jsou vybrány dvě neuronové sítě, které rozšiřují koncept konvoluční neuronové sítě. Těmito sítěmi jsou kapslová síť a reziduální síť, obě jsou dále vysvětleny v příslušných kapitolách s jejich výhodami a nevýhodami. Reziduální síť a kapslová síť jsou poté implementovány pomocí programovacího jazyka python a frameworku TensorFlow s knihovnou Keras, obě se svými příslušnými kapitolami. Na konci práce jsou uvedeny výsledky a závěr. C
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/205503&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/205503&type=result"></script>');
-->
</script>
handle: 11012/211050
This thesis deals with the task of recognizing emotions from electroencephalogram (EEG). Two models were trained for binary classification of emotions, where one classifies neutral emotion or fear and the other classifies happiness or sadness. During the work on this thesis many different architectures were tried, and the best result was obtained using a model with two branches of CNN-LSTM connected before the output layer. The resulting accuracy was 87.309% for sad-happy classification and 84.865% for neutral-fear emotion. Táto práca sa zaoberá rozoznávaním emócií z elektroencefalogramu (EEG). Dva modely na binárnu klasifikáciu emócií, kde jeden model klasifikuje neutrálnu emóciu alebo strach a druhý šťastie a smútok. Počas práce boli vyskúšané mnohé rôzne architektúry, pričom najlepšie výsledky boli dosiahnuté modelom pozostávajúcim z dvoch vetiev KNN-LSTM spojenými pred výstupnou vrstvou. Výsledná presnosť bola 87.309% na klasifikáciu šťastia a smútku a 84.865% na klasifikáciu neutrálnej emócie a strachu. A
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/211050&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/211050&type=result"></script>');
-->
</script>
handle: 11012/208539
Perceptive systems in autonomous cars are a heavily researched topic these days and an essential part of making fully autonomous vehicles possible. First, we make a short summary of the development of such a system, then we explain different approaches to make these systems possible, and we focus on object detection, as this will be the main part of our own created perceptive system. A new model for object detection is implemented, and some additional parts like distance estimation and lane detection are added. Percepční systémy v autonomních vozech jsou v dnešní době intenzivně zkoumaným tématem a nezbytnou součástí potřebnou k vytvoření plně autonomních vozidel. Nejprve, stručně shrneme vývoj takových systémů, vysvětlíme si různé přístupy potřebné k vytvoření percepčních systémů a zaměříme se na detekci objektů, protože to bude naše hlavní část pro námi vytvořená systém. Nový model pro detekci objektů je , spolu s několika dalšími částmi jako odhad vzdálenosti a detekce jízdních pruhů. C
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/208539&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/208539&type=result"></script>');
-->
</script>
handle: 11012/39912
This bachelor's thesis deals with the general introduction into the projects that are needed for the realization of smart cities and technologies implemented in them. In further detail it concentrates more upon the projects that take place in different parts of the world, mainly in Japan and Hawaii. It deals, in particular, with technologically advanced energy solutions, smart grid testing projects which are essential for the smart city itself and implementation of electric vehicles into the grid. Also some of the European smart city projects are mentioned, where the developed technology is tested in real-life cooperation. Tato bakalářská práce se zabývá obecným úvodem do dílčích projektů, které jsou důležité pro realizaci chytrých měst i v nich používaných technologií. Podrobněji tato práce přibližuje projekty v různých zemích, hlavně však v Japonsku a na Havaji. Konkrétně shrnuje technologicky pokročilé energetické řešení a testovací projekty chytré sítě, které jsou základním kamenem pro budoucí chytrá města i efektivní využití elektomobilů. Práce také zmiňuje projekty chytrých měst v Evropě, kde je synchronizace vyvinutých technologií testována v praxi. D
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/39912&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/39912&type=result"></script>');
-->
</script>
handle: 11012/196343
In 1939, due to WWII and the Nuremberg Laws, the revolutionary Czech structural engineer Jaroslav J. Polívka arrived in the United States. After his arrival, he started a research job at UC Berkeley, renewed his engineering practice, and offered his services to the US military as many businesspersons did during this era. Polívka worked for Henry Kaiser who turned Richmond, CA, into a vibrant, fast developing workers city. New residential districts, hospitals, hangars, docks, and warehouses were built there. Henry Kaiser approached the structural development of the city in the same way he revolutionized the construction of battleships: from prefabricated, standardized parts. He supported research and development of new technologies. Mobile, round-shaped hospitals from prefabricated aluminum frames were one of the results of that research. In 1946, Jaroslav J. Polívka introduced himself to the “starchitect” Frank Lloyd Wright. A productive mutual co-operation that lasted 13 years and resulted in eight spectacular projects had started and Polívka, who had been working on extensive research both at UC Berkeley and Stanford University, came up with many technological, structural, and material innovations over the period. In 1957, Henry Kaiser funded the construction of one of the two geodesic domes designed by Richard Buckminster Fuller in Hawaii and in the process he invited Frank Lloyd Wright to consult the project. Jaroslav J. Polívka was probably in direct contact with Fuller, since he wanted to include him in his unfinished project of an encyclopedia of the world-famous structural engineers. On this particular story and a social matrix evolving around Henry Kaiser and Frank Lloyd Wright, the lecture seeks to rethink architectural global modernism as a cooperative project rather than a series of individual innovations manifested by isolated genius figures.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/196343&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/196343&type=result"></script>');
-->
</script>
handle: 11012/189330
Hlavným cieľom práce bolo vytvorenie softvérového riešenia založeného na neurónových sieťach, pomocou ktorého bolo možné detegovať človeka a následne ho nasledovať. Tento výsledok bol dosiahnutý splnením jednotlivých bodov zadania tejto práce. V prvej časti práce je popísaný použitý hardvér, softvérové knižnice a rozhrania pre programovanie aplikácií (API), ako aj robotická platforma dodaná skupinou robotiky a umelej inteligencie ústavu automatizácie a meracej techniky Vysokého Učenia Technického v Brne, na ktorej bol výsledný robot postavený. Následne bola spracovaná rešerš viacerých typov neurónových sietí na detekciu osôb. Podrobne boli popísané štyri detektory. Niektoré z nich boli neskôr testované na klasickom počítači alebo na počítači NVIDIA Jetson Nano. V ďalšom kroku bolo vytvorené softvérové riešenie tvorené piatimi programmi, pomocou ktorého bolo dosiahnuté ciele ako rozpoznanie osoby pomocou neurónovej siete ped-100, určenie reálnej vzdialenosti vzhľadom k robotu pomocou monokulárnej kamery a riadenie roboty k úspešnému dosiahnutiu cieľa. Výstupom tejto práce je robotická platforma umožnujúca detekciu a nasledovanie osoby využiteľné v praxi. The main goal of this thesis was to create a software solution based on a neural network to enable detection of a person and its subsequent following. This was achieved via completion of the points of the assignment. First, a hardware solution and used libraries and application programming interfaces were described as well as the robotic platform supplied by the Robotics and AI group of BUT Department of Control and Instrumentation upon which the robot was built on. Next, a research of various neural networks used for person detection was conducted. Four detectors were described in detail. Some of them were tested on either a PC or a NVIDIA Jetson Nano computer. Afterwards, a software solution consisting of five programs was created to achieve goals such as, detection of the person using ped-100 neural network, real-world position with reference to the robot estimation using monocular camera and robot control to successfully follow a target. The output of this thesis is a robotic platform able to detect and follow a person that can be used in a real-world applications. B
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/189330&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/189330&type=result"></script>');
-->
</script>
handle: 11012/248879
Mental disorders represent inevitable emotions in our society. These psychological states affect the cognitive, emotional and behavioural functioning of individuals. Common men- tal disorders fall into two main diagnostic categories: depressive disorders and anxiety disorders. The aim of this work is to find a new method for detecting whether a given patient suffers from anxiety or depression using EEG classification. In this work, we use a combination of genetic algorithms and models from deep learning. Duševné poruchy predstavujú širokú škálu emócií v našej spoločnosti. Tieto psychické stavy významne ovplyvňujú kognitívne, emocionálne a behaviorálne fungovanie jednotlivcov. Bežné duševné poruchy sa vzťahujú na dve hlavné diagnostické kategórie: depresívne poruchy a úzkostné poruchy. Cielom tejto práce je nájsť novú metódu na detekciu či daný pacient trpí úzkosťou alebo depresiou pomocou klasifikácie EEG. V tejto práci používame kombináciu genetických algoritmov a modelov z hlbokého učení. C
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/248879&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/248879&type=result"></script>');
-->
</script>
handle: 11012/54566
This Bachelor's Thesis was performed during a study stay at the École Supérieure d'Ingénieurs en Électronique et Électrotechnique Paris, France. It proposes solution for speeding up image processing algorithm and its adoption for use with real-time video stream from the infra red camera. The first part discusses characteristics and basic principles of the IR technology, followed by specifications of used camera. Ongoing text also proposes solution of problems concerning network communication with the camera. In addition, it describes camera's output stream format characteristics and solution for output visualisation. Substantial part of this work covers issues concerning parallelization and optimization of video stream and image file data processing. Problem of the parallelisation for this case is explained together with implemented parallelization method. Entire theoretical part is supported with the real results, benchmarks, which are presented in the last chapter. B
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/54566&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/54566&type=result"></script>');
-->
</script>
handle: 11012/247738
This thesis focuses on utilizing image data of tree trunk damage to train a classifier for recognizing species of tree pests that caused this damage. The classifier is designed as a convolutional neural network. To successfully train the model, a preprocessing step - the sub-image generator - was employed before the classifier. This generator creates training data of suitable dimensions by cropping from the original data. The resulting data retains important details for network training. Two methods for generating training sub-images were proposed for the sub-image generator - the Grid division method and the Elliptic division method. Both of these methods can be successfully used to train the classifier for tree pest recognition based on image data of tree damage with comparable model accuracy. The Elliptic division method is more flexible and less time-consuming for preprocessing training data. Tato diplomová práce se věnuje využití obrazových dat poškození kmene stromu k natrénování klasifikátoru pro rozpoznávání druhů škůdců stromů, které toto poškození způsobili. Klasifikátor je navrhnut jako konvoluční neuronová síť. Pro úspěšné natrénování modelu byl klasifikátoru předřazen preprocesingový krok – sub-image generátor. Tento generátor vytváří tréninková data o vhodných rozměrech pomocí výřezů z původních dat. Takto vzniklá data zachovávají důležité detaily pro trénování sítě. Pro sub-image generátor byly navrženy dvě metody vytváření trénovacích pod-obrazů – Grid division method a Elliptic division method. Obě tyto metody lze úspěšně použít pro natrénování klasifikátoru škůdců stromů na základě obrazových dat poškození stromu se srovnatelnou přesností modelu. Metoda Elliptic division je flexibilnější a méně časově náročná na preprocesing trénovacích dat. A
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/247738&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/247738&type=result"></script>');
-->
</script>
handle: 11012/56493
Hlavním cílem této práce bylo navrhnout a vytvořit systém sledování osob s aplikací v oboru bezpečnosti nebo pro analýzu chování zákazníka v obchodě. Systém byl úspěšně implementován pomocí metod KLT trekování, AdaBoost klasifikátoru a datové asociace pomocí Markovských řetězců a metody Monte Carlo. Implementace umožňuje analýzu pohybu lidí ve vnitřních i vnějších prostorech. The main goal of this thesis is to develop multi-target tracking system for use in field of security surveillance or for customer behavior analysis. The system was successfully implemented using KLT tracking, AdaBoost classifier and Markov Chain Monte Carlo data association. It is able to perform analysis of motion of people in both outdoor and indoor environment. C
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/56493&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/56493&type=result"></script>');
-->
</script>
handle: 11012/205503
This thesis is researching workable solutions to the problem of classification of thorax disease on chest x-ray images using artificial intelligence. For a better understanding of the problem, the first chapters explain the basic convolutional neural network and its advantages and disadvantages. Based on these first explanations, two neural networks which are expanding on the concept of the convolutional neural network are chosen. Those are capsulated network and residual network both explained further in their respective sections with their advantages and disadvantages. Residual network and Capsulated network are implemented using programming language python and framework TensorFlow with Keras library, both with their respective chapters. At the end of this thesis, you can find results and conclusion. Tato práce se zabývá výzkumem použitelných řešení pro problém klasifikace onemocnění hrudníku na rentgenových snímcích hrudníku pomocí umělé inteligence. Pro lepší pochopení problému jsou v prvních kapitolách vysvětleny základní konvoluční neuronové sítě a jejich výhody a nevýhody. Na základě těchto prvních vysvětlení jsou vybrány dvě neuronové sítě, které rozšiřují koncept konvoluční neuronové sítě. Těmito sítěmi jsou kapslová síť a reziduální síť, obě jsou dále vysvětleny v příslušných kapitolách s jejich výhodami a nevýhodami. Reziduální síť a kapslová síť jsou poté implementovány pomocí programovacího jazyka python a frameworku TensorFlow s knihovnou Keras, obě se svými příslušnými kapitolami. Na konci práce jsou uvedeny výsledky a závěr. C
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/205503&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/205503&type=result"></script>');
-->
</script>
handle: 11012/211050
This thesis deals with the task of recognizing emotions from electroencephalogram (EEG). Two models were trained for binary classification of emotions, where one classifies neutral emotion or fear and the other classifies happiness or sadness. During the work on this thesis many different architectures were tried, and the best result was obtained using a model with two branches of CNN-LSTM connected before the output layer. The resulting accuracy was 87.309% for sad-happy classification and 84.865% for neutral-fear emotion. Táto práca sa zaoberá rozoznávaním emócií z elektroencefalogramu (EEG). Dva modely na binárnu klasifikáciu emócií, kde jeden model klasifikuje neutrálnu emóciu alebo strach a druhý šťastie a smútok. Počas práce boli vyskúšané mnohé rôzne architektúry, pričom najlepšie výsledky boli dosiahnuté modelom pozostávajúcim z dvoch vetiev KNN-LSTM spojenými pred výstupnou vrstvou. Výsledná presnosť bola 87.309% na klasifikáciu šťastia a smútku a 84.865% na klasifikáciu neutrálnej emócie a strachu. A
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/211050&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/211050&type=result"></script>');
-->
</script>
handle: 11012/208539
Perceptive systems in autonomous cars are a heavily researched topic these days and an essential part of making fully autonomous vehicles possible. First, we make a short summary of the development of such a system, then we explain different approaches to make these systems possible, and we focus on object detection, as this will be the main part of our own created perceptive system. A new model for object detection is implemented, and some additional parts like distance estimation and lane detection are added. Percepční systémy v autonomních vozech jsou v dnešní době intenzivně zkoumaným tématem a nezbytnou součástí potřebnou k vytvoření plně autonomních vozidel. Nejprve, stručně shrneme vývoj takových systémů, vysvětlíme si různé přístupy potřebné k vytvoření percepčních systémů a zaměříme se na detekci objektů, protože to bude naše hlavní část pro námi vytvořená systém. Nový model pro detekci objektů je , spolu s několika dalšími částmi jako odhad vzdálenosti a detekce jízdních pruhů. C
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/208539&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/208539&type=result"></script>');
-->
</script>
handle: 11012/39912
This bachelor's thesis deals with the general introduction into the projects that are needed for the realization of smart cities and technologies implemented in them. In further detail it concentrates more upon the projects that take place in different parts of the world, mainly in Japan and Hawaii. It deals, in particular, with technologically advanced energy solutions, smart grid testing projects which are essential for the smart city itself and implementation of electric vehicles into the grid. Also some of the European smart city projects are mentioned, where the developed technology is tested in real-life cooperation. Tato bakalářská práce se zabývá obecným úvodem do dílčích projektů, které jsou důležité pro realizaci chytrých měst i v nich používaných technologií. Podrobněji tato práce přibližuje projekty v různých zemích, hlavně však v Japonsku a na Havaji. Konkrétně shrnuje technologicky pokročilé energetické řešení a testovací projekty chytré sítě, které jsou základním kamenem pro budoucí chytrá města i efektivní využití elektomobilů. Práce také zmiňuje projekty chytrých měst v Evropě, kde je synchronizace vyvinutých technologií testována v praxi. D
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/39912&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11012/39912&type=result"></script>');
-->
</script>
handle: 11012/196343
In 1939, due to WWII and the Nuremberg Laws, the revolutionary Czech structural engineer Jaroslav J. Polívka arrived in the United States. After his arrival, he started a research job at UC Berkeley, renewed his engineering practice, and offered his services to the US military as many businesspersons did during this era. Polívka worked for Henry Kaiser who turned Richmond, CA, into a vibrant, fast developing workers city. New residential districts, hospitals, hangars, docks, and warehouses were built there. Henry Kaiser approached the structural development of the city in the same way he revolutionized the construction of battleships: from prefabricated, standardized parts. He supported research and development of new technologies. Mobile, round-shaped hospitals from prefabricated aluminum frames were one of the results of that research. In 1946, Jaroslav J. Polívka introduced himself to the “starchitect” Frank Lloyd Wright. A productive mutual co-operation that lasted 13 years and resulted in eight spectacular projects had started and Polívka, who had been working on extensive research both at UC Berkeley and Stanford University, came up with many technological, structural, and material innovations over the period. In 1957, Henry Kaiser funded the construction of one of the two geodesic domes designed by Richard Buckminster Fuller in Hawaii and in the process he invited Frank Lloyd Wright to consult the project. Jaroslav J. Polívka was probably in direct contact with Fuller, since he wanted to include him in his unfinished project of an encyclopedia of the world-famous structural engineers. On this particular story and a social matrix evolving around Henry Kaiser and Frank Lloyd Wright, the lecture seeks to rethink architectural global modernism as a cooperative project rather than a series of individual innovations manifested by isolated genius figures.