These data are supplementary material to Ziegler & Heidbach (2020) and present the results of a 3D geomechanical-numerical model of the stress state with quantified uncertainties. The average modelled stress state is provided for each of the six components of the full stress tensor. In addition, the associated standard deviation for each component is provided. The modelling approach uses a published lithological model and the used data is described in the publication Ziegler & Heidbach (2020). The reduced stress tensor is derived using the Tecplot Addon GeoStress (Stromeyer & Heidbach, 2017).The model results are provided in a comma-separated ascii file. Each line in the file represents one of the approx. 3 million finite elements that comprise the model.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::00b06b22d9cdabe8cbc07d24ea216ed8&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::00b06b22d9cdabe8cbc07d24ea216ed8&type=result"></script>');
-->
</script>
Understanding physical processes prior and during eruptions remains challenging, due to uncertainties about subsurface structures and undetected processes within the volcano. Here, the authors use a dedicated fibre-optic cable to obtain strain data and identify volcanic events and image hidden near-surface volcanic structural features at Etna volcano, Italy. In the paper Jousset et al. (2022), we detect and characterize strain signals associated with explosions, and we find evidences for non-linear grain interactions in a scoria layer of spatially variable thickness. We also demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms, and we identify very small volcanic events, which we relate to fluid migration and degassing. We recorded seismic signals from natural and man-made sources with 2-m spacing along a 1.5-km-long fibre-optic cable layout near the summit of actives craters of Etna volcano, Italy. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS. This data publication contains the full data set used for the analysis. This data set comprises strain-rate data from 1 iDAS interrogator (~750 traces), velocity data from 15 geophones and 4 broadband seismometers, and infrasonic pressure data from infrasound sensors. For further explanation of the data and related processing steps, please refer to Jousset et al. (2022).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::d836c6faaaf613d4f3c57ceaef822577&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::d836c6faaaf613d4f3c57ceaef822577&type=result"></script>');
-->
</script>
GFZ acts as a global analysis center of the International GNSS Service (IGS) and provides ultra-rapid (last 24h), rapid (last day), and final (last week) solutions for GPS and GLONASS. The ultra-rapid solution series is published eight times per day with a delay of around three hours. The 3D seismic velocity models are results of a local earthquake tomography which is performed to illuminate the crustal and uppermost mantle structure beneath the southern Puna plateau and to test the delamination hypothesis. The Southern Puna is distinctive from the rest of the Central Andean plateau in having a higher topographic elevation, a thinner lithosphere and in being flanked to the south by the Chilean flat slab region. Previous investigations involving geochemical, geological and geophysical observations, have invoked lithospheric delamination to explain the distinctive magmatic and structural history, elevation and lithospheric thickness of the region. In the present study, Vp and Vp/Vs ratios were obtained using travel time variations recorded by 75 temporary seismic stations between 2007 and 2009. The earthquakes catalog (Mulcahy et al., 2014) contains 1903 local earthquakes (25077 P- and 14059 S-picks). A minimum 1D model is derived with software VELEST (Kissling et al., 1995). The 3D tomographic inversion is performed with software SIMULPS (Thurber, 1983; Evans et al., 1994). Spread values are used to define well resolved model domains (6 for Vp and 5.5 for Vp/Vs), which are calculated from the model resolution matrix (Toomey & Foulger, 1989). The data are provided as one tar.gz archive. Individual ASCII files contain, at each depth from 0 to 200 km: - Vp model (model.vp.depth_???km), format: longitude, latitude, depth, Vp perturbation, absolute Vp - Vp/Vs model (model.vpvs.depth_???km), format: longitude, latitude, depth, Vp/Vs perturbation, absolute Vp/Vs - spread values for Vp (spread.vp.depth_???km), format: longitude, latitude, depth, spread value - spread values for Vp/Vs model (spread.vpvs.depth_???km), format: longitude, latitude, depth, spread value
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::c3c3ab2abf22074c85cef91178f1abca&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::c3c3ab2abf22074c85cef91178f1abca&type=result"></script>');
-->
</script>
handle: 1956/21661 , 10852/75544
AbstractWhen continents rift, magmatism can produce large volumes of melt that migrate upwards from deep below the Earth’s surface. To understand how magmatism impacts rifting, it is critical to understand how much melt is generated and how it transits the crust. Estimating melt volumes and pathways is difficult, however, particularly in the lower crust where the resolution of geophysical techniques is limited. New broadband seismic reflection data allow us to image the three-dimensional (3-D) geometry of magma crystallized in the lower crust (17.5–22 km depth) of the northern North Sea, in an area previously considered a magma-poor rift. The subhorizontal igneous sill is ∼97 km long (north-south), ∼62 km wide (east-west), and 180 ± 40 m thick. We estimate that 472 ± 161 km3 of magma was emplaced within this intrusion, suggesting that the northern North Sea contains a higher volume of igneous intrusions than previously thought. The significant areal extent of the intrusion (∼2700 km2), as well as the presence of intrusive steps, indicate that sills can facilitate widespread lateral magma transport in the lower crust.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/osf.io/we9t3&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 27 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/osf.io/we9t3&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::895ebbfe4c6f4ad7fc8b4d07c73212c9&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::895ebbfe4c6f4ad7fc8b4d07c73212c9&type=result"></script>');
-->
</script>
The GFZ-Landsvirkjun Theistareykir Fibre array is located in the Theytareykir geothermal area, in North Iceland. It is collocated with arrays of broadband seismometers and gravity meters (see e.g., https://doi.org/10.1186/s40517-021-00208-w). The geometry of the fibre array is following the telecom network in the area, and was chosen to test the seismological capabilities of telecom cables in this geothermal environment. We connected an iDAS V2 interrogator from Silixa. The interrogator location is lat=65.898041, lon=-16.966274. The array starts N-S and after 1.5 km, turns towards the East, up to a local transmission antenna station for mobile phones. The length of the path is ~5 km. The length of the cable is actually more than 15 km, as other fibre instance is connected at the transmission antenna station.. Jumps were performed along the cable to geo-locate the channels. The exact location of the fibre can unfortunately not be disclosed. Original recordings at 1000 Hz were downsampled to 200 Hz using a software from INGV-OE (michele.prestifilippo@ingv.it) and are provided in an h5 format. We provide here the first fibre instance (5 km long). The data contain 1 h long recording intervals framing M>5 teleseismic earthquakes recorded in the frame of the global DAS month, an initiative to collaboratively record and share simultaneously recorded DAS data from all over the world (https://www.norsar.no/in-focus/global-das-monitoring-month-february-2023). DAS is an emerging technology increasingly used by seismologists to convert kilometer long optical fibers into seismic sensors.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::e3edaf1f64598d7ab6f0fdd0b6293a47&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::e3edaf1f64598d7ab6f0fdd0b6293a47&type=result"></script>');
-->
</script>
The Central Andes (~21°S) is a subduction-type orogeny formed in the last ~50 Ma from the subduction of the Nazca oceanic plate beneath the South American continental plate. However, the most important phases of deformation occur in the last 20 Ma. Pulses of shortening have led to the sudden growth of the by the Altiplano-Puna plateau. Previous studies have provided insights on the importance of various mechanisms on the overall shortening such as the weakening of the overriding plate from crustal eclogitization and delamination, or the importance of a relatively high friction at the subduction interface, and weak sediments in foreland. However none of them has addressed the mechanism behind these shortening pulses yet. Therefore, we built a series of high resolution 2D visco-plastic subduction models using the ASPECT geodynamic code, in which the oceanic plate is buoyancy-driven and the velocity of the continent is prescribed. We have also implemented a realistic geometry for the south American plate at ~30 Ma. We propose a new plausible mechanism (buckling and steepening of the slab) as the cause of these pulses. The buckling leads to the blockage of the trench. Consequently, the difference of velocity between the South American plate and the trench is accommodated by shortening. The data presented here includes the parameters files, for the reference model (S1) and the following alternative simulations: models with variation of the friction at the subduction interface (S2a-c), a model without eclogitization of the lower crust (S3) and a model with higher thermal conductivity of the upper crust (S4). Additionally, this publication includes the initial composition and thermal state of the lithosphere used for the models and a Readme file that gives all the instructions to run them.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::ff117029bbd6abe9ac7eada5fa038bbb&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::ff117029bbd6abe9ac7eada5fa038bbb&type=result"></script>');
-->
</script>
Surface air temperature measurements obtained from different sensors are used to construct a unique time series with one minute time-interval. Apart from differences in design and environmental exposition, periods of missing data also exist in the data series of each sensor. A primary data set was selected in terms of quality and temporal extension. A combination of two different techniques is applied to complete this data set: one is based on the autocorrelation of the series and the other on measurements taken from other sensors. The resulting values constitute a complete series of surface air temperature at AGGO.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::1ef58982b826d947ed7061b726a2b485&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::1ef58982b826d947ed7061b726a2b485&type=result"></script>');
-->
</script>
Definitive digital values of the Earth's mangetic field recorded during 2014 at INTERMAGNET observatories around the world. Data includes minute, hourly and daily vector values, along with observatory baseline values for quality control. Annual means are also included. All data is included on the single downloadable archive file (gzipped tar format) available from this landing page. This is the 24th annual publication in the series. Some national data institutions may have related DOIs that describe subsets of the data. These DOIs are shown under "Related DOIs to be quoted". For more information on the data formats used in this publication and the technical standards used to create the data, please refer to the INTERMAGNET Technical Manual and the Technical note TN6 "INTERMAGNET Definitive One-second Data Standard".
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::19eb46a92b4e52def9c3b95d42140726&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::19eb46a92b4e52def9c3b95d42140726&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::71f210b40dce44fed797cfdae980fdac&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::71f210b40dce44fed797cfdae980fdac&type=result"></script>');
-->
</script>
These data are supplementary material to Ziegler & Heidbach (2020) and present the results of a 3D geomechanical-numerical model of the stress state with quantified uncertainties. The average modelled stress state is provided for each of the six components of the full stress tensor. In addition, the associated standard deviation for each component is provided. The modelling approach uses a published lithological model and the used data is described in the publication Ziegler & Heidbach (2020). The reduced stress tensor is derived using the Tecplot Addon GeoStress (Stromeyer & Heidbach, 2017).The model results are provided in a comma-separated ascii file. Each line in the file represents one of the approx. 3 million finite elements that comprise the model.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::00b06b22d9cdabe8cbc07d24ea216ed8&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::00b06b22d9cdabe8cbc07d24ea216ed8&type=result"></script>');
-->
</script>
Understanding physical processes prior and during eruptions remains challenging, due to uncertainties about subsurface structures and undetected processes within the volcano. Here, the authors use a dedicated fibre-optic cable to obtain strain data and identify volcanic events and image hidden near-surface volcanic structural features at Etna volcano, Italy. In the paper Jousset et al. (2022), we detect and characterize strain signals associated with explosions, and we find evidences for non-linear grain interactions in a scoria layer of spatially variable thickness. We also demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms, and we identify very small volcanic events, which we relate to fluid migration and degassing. We recorded seismic signals from natural and man-made sources with 2-m spacing along a 1.5-km-long fibre-optic cable layout near the summit of actives craters of Etna volcano, Italy. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS. This data publication contains the full data set used for the analysis. This data set comprises strain-rate data from 1 iDAS interrogator (~750 traces), velocity data from 15 geophones and 4 broadband seismometers, and infrasonic pressure data from infrasound sensors. For further explanation of the data and related processing steps, please refer to Jousset et al. (2022).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::d836c6faaaf613d4f3c57ceaef822577&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::d836c6faaaf613d4f3c57ceaef822577&type=result"></script>');
-->
</script>
GFZ acts as a global analysis center of the International GNSS Service (IGS) and provides ultra-rapid (last 24h), rapid (last day), and final (last week) solutions for GPS and GLONASS. The ultra-rapid solution series is published eight times per day with a delay of around three hours. The 3D seismic velocity models are results of a local earthquake tomography which is performed to illuminate the crustal and uppermost mantle structure beneath the southern Puna plateau and to test the delamination hypothesis. The Southern Puna is distinctive from the rest of the Central Andean plateau in having a higher topographic elevation, a thinner lithosphere and in being flanked to the south by the Chilean flat slab region. Previous investigations involving geochemical, geological and geophysical observations, have invoked lithospheric delamination to explain the distinctive magmatic and structural history, elevation and lithospheric thickness of the region. In the present study, Vp and Vp/Vs ratios were obtained using travel time variations recorded by 75 temporary seismic stations between 2007 and 2009. The earthquakes catalog (Mulcahy et al., 2014) contains 1903 local earthquakes (25077 P- and 14059 S-picks). A minimum 1D model is derived with software VELEST (Kissling et al., 1995). The 3D tomographic inversion is performed with software SIMULPS (Thurber, 1983; Evans et al., 1994). Spread values are used to define well resolved model domains (6 for Vp and 5.5 for Vp/Vs), which are calculated from the model resolution matrix (Toomey & Foulger, 1989). The data are provided as one tar.gz archive. Individual ASCII files contain, at each depth from 0 to 200 km: - Vp model (model.vp.depth_???km), format: longitude, latitude, depth, Vp perturbation, absolute Vp - Vp/Vs model (model.vpvs.depth_???km), format: longitude, latitude, depth, Vp/Vs perturbation, absolute Vp/Vs - spread values for Vp (spread.vp.depth_???km), format: longitude, latitude, depth, spread value - spread values for Vp/Vs model (spread.vpvs.depth_???km), format: longitude, latitude, depth, spread value
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::c3c3ab2abf22074c85cef91178f1abca&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______156::c3c3ab2abf22074c85cef91178f1abca&type=result"></script>');
-->
</script>
handle: 1956/21661 , 10852/75544
AbstractWhen continents rift, magmatism can produce large volumes of melt that migrate upwards from deep below the Earth’s surface. To understand how magmatism impacts rifting, it is critical to understand how much melt is generated and how it transits the crust. Estimating melt volumes and pathways is difficult, however, particularly in the lower crust where the resolution of geophysical techniques is limited. New broadband seismic reflection data allow us to image the three-dimensional (3-D) geometry of magma crystallized in the lower crust (17.5–22 km depth) of the northern North Sea, in an area previously considered a magma-poor rift. The subhorizontal igneous sill is ∼97 km long (north-south), ∼62 km wide (east-west), and 180 ± 40 m thick. We estimate that 472 ± 161 km3 of magma was emplaced within this intrusion, suggesting that the northern North Sea contains a higher volume of igneous intrusions than previously thought. The significant areal extent of the intrusion (∼2700 km2), as well as the presence of intrusive steps, indicate that sills can facilitate widespread lateral magma transport in the lower crust.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/osf.io/we9t3&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 27 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/osf.io/we9t3&type=result"></script>');
-->
</script>