FAIR principles have become reference criteria for promoting and evaluating openness of scientific data and for improving datasets Findability, Accessibility, Interoperability and Reusability. This also applies to Research Infrastructures (RIs) in the solid Earth domain committed to provide access to seismological data, ground deformations inferred from terrestrial and satellite observations, geological maps and laboratory experiments. Such RIs are indeed committed since a long time, well before the appearance of FAIR principles, to engage scientific communities involved in data collection, standardization and quality control as well as in implementing metadata and services for qualification, storage and accessibility. By addressing open science and managing scientific data, they are working to adopt FAIR principles, thus having the onerous task of turning these principles into practices. In this work we argue that although FAIR principles have the merit of creating a common background of knowledge to engage communities in providing data in a standard way thus easing interoperability and data sharing, in order to make the adoption of FAIR principles less onerous there is an urgent need of clear models, reference architectures and technical guidelines which can support RI implementers in the realization of FAIR data provision systems. We therefore discuss the state of the art of FAIR principles ecosystem and open new perspectives by discussing a four-stages roadmap that reorganizes FAIR principles in a way that better fits to the approach of RI implementers, and a FAIR adoption process that relates FAIR principles to technologies for their implementation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.00003&type=result"></script>');
-->
</script>
gold |
citations | 10 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.00003&type=result"></script>');
-->
</script>
Background This data is camera images and nozzle pressure gauge voltage traces from rapid decompression shots at the LMU shock tube facility. This data is discussed in the "Materials and Methods" section of the paper "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows". Electric sparks and explosive flows have long been associated with each other. Flowing dust particles originate charge through contact and separate based on inertia, resulting in strong electric fields supporting sparks. These sparks can cause explosions in dusty environments, especially those rich in carbon, such as coal mines and grain elevators. Recent observations of explosive events in nature and decompression experiments indicate that supersonic flows of explosions may alter the electrical discharge process. Shocks may suppress parts of the hierarchy of the discharge phenomena, such as leaders. In our decompression experiments, a shock tube ejects a flow of gas and particles into an expansion chamber. We imaged an illuminated plume from the decompression of a mixture of argon and <100 mg of diamond particles and observe sparks occurring below the sharp boundary of a condensation cloud. We also performed hydrodynamics simulations of the decompression event that provide insight into the conditions supporting the observed behavior. Simulation results agree closely with the experimentally observed Mach disk shock shape and height. This represents direct evidence that the sparks are sculpted by the outflow. The spatial and temporal scale of the sparks transmit an impression of the shock tube flow, a connection that could enable novel instrumentation to diagnose currently inaccessible supersonic granular phenomena. Accessing Data The prefixes of the filenames correspond to the shot dates and times listed in table S1 of the paper. The "_camera.zip" files contains tiff images of the camera frames. The ".ixc" file in each zip lists camera settings in plain text. The ".dat" file contains the voltage measurement of the nozzle pressure gauge. Row 1 is the header, row 2 is the time in seconds, and row 3 is the voltage of the pressure gauge in Volts. The peak pressure in the header can be used to relate the voltage to pressure. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with support from the Site-Directed Research and Development program, DOE/NV/03624--0956, and in part by the European Plate Observing Systems Transnational Access program of the European Community HORIZON 2020 research and innovation program under grant N 676564. CC acknowledges the support from the DFG grant CI 25/2-1 and from the European Community HORIZON 2020 research and innovation programme under the Marie Sklodowska Curie grant nr. 705619. LLNL-MI-817289. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific com- mercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. {"references": ["C. Cimarelli, M. Alatorre-Ibargengoitia, U. Kueppers, B. Scheu, D. Dingwell, Experimen- tal generation of volcanic lightning. Geology 42, 79\u201382 (2014)"]}
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
Risultati della valutazione del corso "Praticare l'Open Science nelle Scienze della Terra e dell'ambiente"
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4721950&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4721950&type=result"></script>');
-->
</script>
AbstractLate Miocene to Pleistocene volcanism within the Vardar zone (North Macedonia) covers a large area, has a wide range in composition, and is largely connected to the tectonic evolution of the South Balkan extensional system, the northern part of the Aegean extensional regime. The onset of the scattered potassic to ultrapotassic volcanism south from the Scutari-Peć transverse zone occurred at ca. 8.0 Ma based on this study. Here, we focused on three volcanic centers located on deep structures or thrust faults along the western part of the Vardar zone, for which there is none to very little geochronological and geochemical data available. Pakoševo and Debrište localities are represented as small remnants of lava flows cropping out at the southern edge of Skopje basin and at the western edge of Tikveš basin, respectively. Šumovit Greben center is considered as part of the Kožuf-Voras volcanic system, and it is located on its westernmost side, at the southern edge of Mariovo basin, which is largely composed of volcaniclastic sediments. We present new eruption ages applying the unspiked Cassignol-Gillot K–Ar technique on groundmass, as well as petrological and geochemical data, supplemented with Sr and Nd isotopes to complement and better understand the Neogene-Pleistocene volcanism in the region. Eruption ages on these rocks interlayered between sedimentary formations allow to better constrain the evolution of those sedimentary basins. Rocks from the three volcanic centers belong to the high-K calc-alkaline–shoshonitic series based on their elevated K content. The oldest center amongst these three localities, as well as other Late Miocene centers within the region, is the trachyandesitic Debrište, which formed at ca. 8.0 Ma, and exhibits the highest Nd and lowest Sr isotopic ratios (0.512441–0.512535 and 0.706759–0.706753, respectively). The basaltic trachyandesite Pakoševo center formed at ca. 3.8 Ma and its Nd and Sr isotopic ratios (0.512260 and 0.709593, respectively) bear the strongest signature of crustal contamination. The rhyolitic Šumovit Greben center is a composite volcanic structure formed at ca. 3.0–2.7 Ma. Its youngest eruption unit has a slightly higher Nd and lower Sr isotopic ratios (0.512382 and 0.709208, respectively) representing a magma with a lesser extent of crustal assimilation than the other samples from this center. The overall trend through time in the Sr and Nd isotopic ratios of the Late Miocene to Pleistocene mafic volcanic centers in the region implies an increasing rate of metasomatism of the lithospheric mantle.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00531-021-02153-2&type=result"></script>');
-->
</script>
hybrid |
citations | 2 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00531-021-02153-2&type=result"></script>');
-->
</script>
handle: 11250/3058781 , 20.500.11850/549765 , 11368/3056659 , 10451/53665
In this article we describe EPOS Seismology, the Thematic Core Service consortium for the seismology domain within the European Plate Observing System infrastructure. EPOS Seismology was developed alongside the build-up of EPOS during the last decade, in close collaboration between the existing pan-European seismological initiatives ORFEUS (Observatories and Research Facilities for European Seismology), EMSC (Euro-Mediterranean Seismological Center) and EFEHR (European Facilities for Earthquake Hazard and Risk) and their respective communities. It provides on one hand a governance framework that allows a well-coordinated interaction of the seismological community services with EPOS and its bodies, and on the other hand it strengthens the coordination among the already existing seismological initiatives with regard to data, products and service provisioning and further development. Within the EPOS Delivery Framework, ORFEUS, EMSC and EFEHR provide a wide range of services that allow open access to a vast amount of seismological data and products, following and implementing the FAIR principles and supporting open science. Services include access to raw seismic waveforms of thousands of stations together with relevant station and data quality information, parametric earthquake information of recent and historical earthquakes together with advanced event-specific products like moment tensors or source models and further ancillary services, and comprehensive seismic hazard and risk information, covering latest European scale models and their underlying data. The services continue to be available on the well-established domain-specific platforms and websites, and are also consecutively integrated with the interoperable central EPOS data infrastructure. EPOS Seismology and its participating organizations provide a consistent framework for the future development of these services and their operation as EPOS services, closely coordinated also with other international seismological initiatives, and is well set to represent the European seismological research infrastructures and their stakeholders within EPOS.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4401/ag-8767&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 12 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4401/ag-8767&type=result"></script>');
-->
</script>
The immense advances in computer power achieved in the last decades have had a significant impact in Earth science, providing valuable research outputs that allow the simulation of complex natural processes and systems, and generating improved forecasts. The development and implementation of innovative geoscientific software is currently evolving towards a sustainable and efficient development by integrating models of different aspects of the Earth system. This will set the foundation for a future digital twin of the Earth. The codification and update of this software require great effort from research groups and therefore, it needs to be preserved for its reuse by future generations of geoscientists. Here, we report on Geo-Soft-CoRe, a Geoscientific Software & Code Repository, hosted at the archive DIGITAL.CSIC. This is an open source, multidisciplinary and multiscale collection of software and code developed to analyze different aspects of the Earth system, encompassing tools to: 1) analyze climate variability; 2) assess hazards, and 3) characterize the structure and dynamics of the solid Earth. Due to the broad range of applications of these software packages, this collection is useful not only for basic research in Earth science, but also for applied research and educational purposes, reducing the gap between the geosciences and the society. By providing each software and code with a permanent identifier (DOI), we ensure its self-sustainability and accomplish the FAIR (Findable, Accessible, Interoperable and Reusable) principles. Therefore, we aim for a more transparent science, transferring knowledge in an easier way to the geoscience community, and encouraging an integrated use of computational infrastructure.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::0b34716dfe15c7d7ae5d8a0b567463c3&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::0b34716dfe15c7d7ae5d8a0b567463c3&type=result"></script>');
-->
</script>
Decades of photogrammetric records at Bezymianny, one of the most active volcanoes on Earth, allow unveiling morphological changes, eruption and intrusion dynamics, erosion, lava and tephra deposition processes. This data publication releases an almost 7-decade long record, retrieved from airborne, satellite, and UAV platforms. The Kamchatkan Institute of Volcanology and Seismology released archives of high-resolution aerial images acquired in 1967-2013. We complemented the aerial datasets with 2017 Pleiades tri-stereo satellite and UAV images. The images were processed using Erdas Imagine and Photomod software. Here we publish nine quality-controlled point clouds in LAS format referenced to the WGS84 (UTM zone 57N). By comparing the point clouds we were able to describe topographic changes and calculate volumetric differences, details of which were further analyzed in Shevchenko et al. (2020, https://doi.org/...). The ~5-decade-long photogrammetric record was achieved by 8 aerial and 1 satellite-UAV datasets. The 8 sets of near nadir aerial photographs acquired in 1967, 1968, 1976, 1977, 1982, 1994, 2006, and 2013 were taken with various photogrammetry cameras dedicated for topographic analysis, specifically the AFA 41-10 camera (1967, 1968, 1976, and 1977; focal length = 99.086 mm), the TAFA 10 camera (1982 and 1994; focal length = 99.120 mm), and the AFA TE-140 camera (2006 and 2013; focal length = 139.536 mm). These analog cameras have all an 18×18 cm frame size. The acquisition flight altitude above the mean surface of Bezymianny varied from 1,500-2,500 m above mean surface elevation, translating up to >5,000 m above sea level. For photogrammetric processing, we used 3-4 consecutive shots that provided a 60-70% forward overlap. The analog photo negatives were digitized by scanning with Epson Perfection V750 Pro scanner in a resolution of 2,400 pixels/inch (approx. pixel (px) size = 0.01 mm). The mean scale within a single photograph depends on the distance to the surface and corresponds on average to 1:10,000-1:20,000. Thus, each px in the scanned image represents about 10-20 cm resolution on the ground. The coordinates of 12 ground control points were derived from a Theo 010B theodolite dataset collected at geodetic benchmarks during a 1977 fieldwork. These benchmarks were established on the slopes of Bezymianny before the 1977 aerial survey and then captured with the AFA 41-10 aerial camera. The most recent was a satellite dataset acquired on 2017-09-09 by the PHR 1B sensor aboard the Pleiades satellite (AIRBUS Defence & Space) operated by the French space agency (CNES). The forward, nadir and backward camera configuration allows revisiting any point on earth and was tasked for the acquisition of Bezymianny to provide a 0.5 m resolution panchromatic imagery dataset. In order to improve the Pleiades data, we complemented them with UAV data collected on 2017-07-29 with DJI Mavic Pro during fieldwork at Bezymianny. This data publication includes a description of the data (in pdf format) and the nine processed and controlled three-dimensional point clouds (in LAS format). The point clouds can be easily interpolated and imported into most open and commercially available geographic information system (GIS) software. Further details on data and data handling are provided in Shevchenko et al. (2020).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/gfz.2.1.2020.002&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/gfz.2.1.2020.002&type=result"></script>');
-->
</script>
Abstract. Geothermal exploration will help move towards a low-carbon economy and provide a basis for green and sustainable growth. The development of new practical, reliable methods for geophysical characterization of a reservoir has the potential to facilitate a broader application of deep geothermal energy. At the Groß Schönebeck in situ laboratory, a unique vertical seismic profiling (VSP) dataset was recorded in two 4.3 km deep geothermal boreholes using fibre-optic cables in early 2017. The experiment set-up consisted of 61 vibrator points organized in a spiral pattern around the well site to ensure a proper offset and azimuth distribution in the target reservoir section. Data were processed using a standard workflow for VSP. As a result, a detailed three-dimensional 0.75km×1km×4.5 km image around the existing boreholes was created using the Kirchhoff migration algorithm with restricted aperture. The imaging resolved small-scale features in the reservoir essential for the future exploration of the geothermal research site. Borehole data with vertical resolution up to 16 m revealed the existing depth variations of the Elbe reservoir sandstone horizon at 4.08–4.10 km depth and indications of an unconformity in the area where we expect volcanic rocks. In addition, in the borehole data a complex interlaying with numerous pinch-outs in the Upper Rotliegend reservoir section (3.8 to 4 km depth) was discovered. Thereby, we demonstrate that wireline fibre-optic data can significantly contribute to exploration by providing an efficient and reliable method for deep geothermal reservoir imaging.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/se-13-1291-2022&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 6 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/se-13-1291-2022&type=result"></script>');
-->
</script>
A cycle of four webinars on Open Science and Open Access for earth and environmental sciences, with discipline-specific tools and practical resources. Course outline: Module 1: - Introduction and motivations - Open Science in Solid Earth Science Module 2: - Research Data Management - OS in solid Earth sciences: the EPOS research infrastructure experience Module 3: - FAIR principles and Open Data - Implementing FAIR. Considerations from the solid Earth domain Module 4: - The Data Management Plan - The adoption of Open Science Paradigm at INGV - Practical Tips Scientific committee: Maria Silvia Giamberini, IGG/CNR Gina Pavone, ISTI/CNR
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4570243&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4570243&type=result"></script>');
-->
</script>
This data publication contains vertical seismic profiling (VSP) data collected at the Groß Schönebeck site, Germany, from February 15-18, 2017. Energy excitation was performed with vibroseis sources. Data was acquired in the two 4.3 km deep wells E GrSk 3/90 and Gt GrSk4/05 using hybrid wireline fiber-optic sensor cables and distributed acoustic sensing (DAS) technology. The survey design and data acquisition, the overall characteristics of the acquired data, as well as the data processing and evaluation for a zero-offset source position are described in the paper of Henninges et al. (2021) published in Solid Earth. The data for several source positions presented in this paper is contained here, mostly in the form of full waveform data stored in seg-y format. A detailed description of the individual data sets is given in the attached data description document.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/gfz.4.8.2021.001&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/gfz.4.8.2021.001&type=result"></script>');
-->
</script>
FAIR principles have become reference criteria for promoting and evaluating openness of scientific data and for improving datasets Findability, Accessibility, Interoperability and Reusability. This also applies to Research Infrastructures (RIs) in the solid Earth domain committed to provide access to seismological data, ground deformations inferred from terrestrial and satellite observations, geological maps and laboratory experiments. Such RIs are indeed committed since a long time, well before the appearance of FAIR principles, to engage scientific communities involved in data collection, standardization and quality control as well as in implementing metadata and services for qualification, storage and accessibility. By addressing open science and managing scientific data, they are working to adopt FAIR principles, thus having the onerous task of turning these principles into practices. In this work we argue that although FAIR principles have the merit of creating a common background of knowledge to engage communities in providing data in a standard way thus easing interoperability and data sharing, in order to make the adoption of FAIR principles less onerous there is an urgent need of clear models, reference architectures and technical guidelines which can support RI implementers in the realization of FAIR data provision systems. We therefore discuss the state of the art of FAIR principles ecosystem and open new perspectives by discussing a four-stages roadmap that reorganizes FAIR principles in a way that better fits to the approach of RI implementers, and a FAIR adoption process that relates FAIR principles to technologies for their implementation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.00003&type=result"></script>');
-->
</script>
gold |
citations | 10 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.00003&type=result"></script>');
-->
</script>
Background This data is camera images and nozzle pressure gauge voltage traces from rapid decompression shots at the LMU shock tube facility. This data is discussed in the "Materials and Methods" section of the paper "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows". Electric sparks and explosive flows have long been associated with each other. Flowing dust particles originate charge through contact and separate based on inertia, resulting in strong electric fields supporting sparks. These sparks can cause explosions in dusty environments, especially those rich in carbon, such as coal mines and grain elevators. Recent observations of explosive events in nature and decompression experiments indicate that supersonic flows of explosions may alter the electrical discharge process. Shocks may suppress parts of the hierarchy of the discharge phenomena, such as leaders. In our decompression experiments, a shock tube ejects a flow of gas and particles into an expansion chamber. We imaged an illuminated plume from the decompression of a mixture of argon and <100 mg of diamond particles and observe sparks occurring below the sharp boundary of a condensation cloud. We also performed hydrodynamics simulations of the decompression event that provide insight into the conditions supporting the observed behavior. Simulation results agree closely with the experimentally observed Mach disk shock shape and height. This represents direct evidence that the sparks are sculpted by the outflow. The spatial and temporal scale of the sparks transmit an impression of the shock tube flow, a connection that could enable novel instrumentation to diagnose currently inaccessible supersonic granular phenomena. Accessing Data The prefixes of the filenames correspond to the shot dates and times listed in table S1 of the paper. The "_camera.zip" files contains tiff images of the camera frames. The ".ixc" file in each zip lists camera settings in plain text. The ".dat" file contains the voltage measurement of the nozzle pressure gauge. Row 1 is the header, row 2 is the time in seconds, and row 3 is the voltage of the pressure gauge in Volts. The peak pressure in the header can be used to relate the voltage to pressure. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with support from the Site-Directed Research and Development program, DOE/NV/03624--0956, and in part by the European Plate Observing Systems Transnational Access program of the European Community HORIZON 2020 research and innovation program under grant N 676564. CC acknowledges the support from the DFG grant CI 25/2-1 and from the European Community HORIZON 2020 research and innovation programme under the Marie Sklodowska Curie grant nr. 705619. LLNL-MI-817289. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific com- mercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. {"references": ["C. Cimarelli, M. Alatorre-Ibargengoitia, U. Kueppers, B. Scheu, D. Dingwell, Experimen- tal generation of volcanic lightning. Geology 42, 79\u201382 (2014)"]}
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
Risultati della valutazione del corso "Praticare l'Open Science nelle Scienze della Terra e dell'ambiente"