Abstract. Ocean color remote sensing offers two decades-long time series of information on phytoplankton abundance. However, determining the structure of the phytoplankton community from this signal is not straightforward, and many uncertainties remain to be evaluated, despite multiple intercomparison efforts of the different available algorithms. Here, we use remote sensing and machine learning to infer the abundance of seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. Our dataset is to our knowledge the most comprehensive and complete, available to describe phytoplankton community structure at a global scale using a molecular marker that defines relative abundances of all phytoplankton groups simultaneously. The methodology shows satisfying performances to provide robust estimates of phytoplankton groups using satellite data, with few limitations regarding the global generalization of the method. Furthermore, this new satellite-based methodology allows a valuable global intercomparison with the pigment-based approach used in in-situ and satellite data to identify phytoplankton groups. Nevertheless, these datasets show different, yet coherent information on the phytoplankton, valuable for the understanding of community structure. This makes remote sensing observations excellent tools to collect Essential Biodiversity Variables and provide a foundation for developing marine biodiversity forecasts.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-1421&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-1421&type=result"></script>');
-->
</script>
Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 153 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>');
-->
</script>
handle: 10037/19519
In addition to indirect support to fisheries, marine habitats also provide non-use benefits often overlooked in most bioeconomic models. We expand a dynamic bioeconomic fisheries model where presence of natural habitats reduces fishing cost via aggregation effects and supplies non-use benefits. The theoretical model is illustrated with an application to cold-water corals in Norway where two fishing methods are considered–destructive bottom trawl and non-destructive coastal gear. Non-use values of cold-water corals in Norway are estimated using a discrete choice experiment. Both the theoretical model and its empirical applications demonstrate how non-use values impact optimal fishing practices.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/693477&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 19 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/693477&type=result"></script>');
-->
</script>
AbstractThe impact of climate change on diversity, functioning and biogeography of marine plankton remains a major unresolved issue. Here, niche theory is applied to plankton metagenomes of 6 size fractions, from viruses to meso-zooplankton, sampled during theTaraOceans expedition. Niches are used to derive plankton size-dependent structuring of the oceans south of 60°N inclimato-genomicprovinces characterized by signature genomes. By 2090, assuming the RCP8.5 high warming scenario, provinces would be reorganized over half of the considered ocean area and quasi-systematically displaced poleward. Particularly, tropical provinces would expand at the expense of temperate ones. Sea surface temperature is identified as the main driver of changes (50%) followed by phosphate (11%) and salinity (10%). Compositional shifts among key planktonic groups suggest impacts on the nitrogen and carbon cycles. Provinces are linked to estimates of carbon export fluxes which are projected to decrease on average by 4% in response to biogeographical restructuring.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.10.20.347237&type=result"></script>');
-->
</script>
citations | 4 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.10.20.347237&type=result"></script>');
-->
</script>
AbstractLess than a quarter of ocean deoxygenation that will ultimately be caused by historical CO2 emissions is already realized, according to millennial-scale model simulations that assume zero CO2 emissions from year 2021 onwards. About 80% of the committed oxygen loss occurs below 2000 m depth, where a more sluggish overturning circulation will increase water residence times and accumulation of respiratory oxygen demand. According to the model results, the deep ocean will thereby lose more than 10% of its pre-industrial oxygen content even if CO2 emissions and thus global warming were stopped today. In the surface layer, however, the ongoing deoxygenation will largely stop once CO2 emissions are stopped. Accounting for the joint effects of committed oxygen loss and ocean warming, metabolic viability representative for marine animals declines by up to 25% over large regions of the deep ocean, posing an unavoidable escalation of anthropogenic pressure on deep-ocean ecosystems.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22584-4&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 47 | |
popularity | Top 1% | |
influence | Average | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-22584-4&type=result"></script>');
-->
</script>
pmid: 31258386
pmc: PMC6566294
This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef. S. J. Hennige was funded by NERC NE/K009028/1 and NE/K009028/2
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00338-017-1653-y&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 39 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00338-017-1653-y&type=result"></script>');
-->
</script>
pmc: PMC8333327 , PMC8494887
handle: 10261/249861 , 20.500.11850/501714 , 10754/670662
AbstractOcean plankton comprise organisms from viruses to fish larvae that are fundamental to ecosystem functioning and the provision of marine services such as fisheries and CO2 sequestration. The latter services are partly governed by variations in plankton community composition and the expression of traits such as body size at community-level. While community assembly has been thoroughly studied for the smaller end of the plankton size spectrum, the larger end comprises ectotherms that are often studied at the species, or group-level, rather than as communities. The body size of marine ectotherms decreases with temperature, but controls on community-level traits remain elusive, hindering the predictability of marine services provision. Here, we leverage Tara Oceans datasets to determine how zooplankton community composition and size structure varies with latitude, temperature and productivity-related covariates in the global surface ocean. Zooplankton abundance and median size decreased towards warmer and less productive environments, as a result of changes in copepod composition. However, some clades displayed the opposite relationships, which may be ascribed to alternative feeding strategies. Given that climate models predict increasingly warmed and stratified oceans, our findings suggest that zooplankton communities will shift towards smaller organisms which might weaken their contribution to the biological carbon pump.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-94615-5&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 28 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-94615-5&type=result"></script>');
-->
</script>
Stéphane Pesant gave this presentation as invited speaker during the Open Science clinic of the second JPI-Oceans conference in Lisbonne (26th October 2017). It provides an overview of the OpenAIRE-Connect initiative and shares community experience from the Tara Oceans initiative, the H2020 project ATLAS, and the EuroMarine network of marine research. Second JPI-Oceans conference, Lissabon, Portugal; doi:10.5281/ZENODO.1059028
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1059027&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1059027&type=result"></script>');
-->
</script>
Abstract The patterns of species diversity of plankton functional groups (PFGs) remain poorly understood although they matter greatly for marine ecosystem functioning. Here, we use an ensemble of empirical species distribution models for 845 plankton species to estimate the global species richness of three phytoplankton and 11 zooplankton functional groups as a function of objectively selected environmental predictors. The annual mean species richness of all PFGs decreases from the low to the high latitudes, but the steepness and the shape of this decrease vary significantly across PFGs. Pteropods, small copepods (Oithonids and Poecilostomatoids) and Salps have the steepest latitudinal gradients, whereas Amphipods and the three phytoplankton groups have the weakest ones. Temperature, irradiance and nutrient concentration are the first-order control on the latitudinal richness patterns, whilst the environmental conditions associated to upwelling systems, boundary currents and oxygen minimum zones modulate the position of the peaks and troughs in richness. The species richness of all PFGs increases with net primary production but decreases with particles size and the efficiency of the biological carbon pump. Our study puts forward emergent biodiversity–ecosystem functioning relationships and hypotheses about their underlying drivers for future field-based and modelling research.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plankt/fbad044&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 4 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/plankt/fbad044&type=result"></script>');
-->
</script>