handle: 11250/3018092 , 11250/2660674 , 10138/351117
1. Arctic and sub-Arctic lakes in northern Europe are increasingly threatened by climate change, which can affect their biodiversity directly by shifting thermal and hydrological regimes, and indirectly by altering landscape processes and catchment vegetation. Most previous studies of northern lake biodiversity responses to environmental changes have focused on only a single organismal group. Investigations at whole-lake scales that integrate different habitats and trophic levels are currently rare, but highly necessary for future lake monitoring and management. 2. We analysed spatial biodiversity patterns of 74 sub-Arctic lakes in Norway, Sweden, Finland, and the Faroe Islands with monitoring data for at least three biological focal ecosystem components (FECs)—benthic diatoms, macrophytes, phytoplankton, littoral benthic macroinvertebrates, zooplankton, and fish—that covered both pelagic and benthic habitats and multiple trophic levels. 3. We calculated the richnessrelative (i.e. taxon richness of a FEC in the lake divided by the total richness of that FEC in all 74 lakes) and the biodiversity metrics (i.e. taxon richness, inverse Simpson index (diversity), and taxon evenness) of individual FECs using presence–absence and abundance data, respectively. We then investigated whether the FEC richnessrelative and biodiversity metrics were correlated with lake abiotic and geospatial variables. We hypothesised that (1) individual FECs would be more diverse in a warmer and wetter climate (e.g. at lower latitudes and/or elevations), and in hydrobasins with greater forest cover that could enhance the supply of terrestrial organic matter and nutrients that stimulated lake productivity; and (2) patterns in FEC responses would be coupled among trophic levels. 4. Results from redundancy analyses showed that the richnessrelative of phytoplankton, macrophytes, and fish decreased, but those of the intermediate trophic levels (i.e. macroinvertebrates and zooplankton) increased with decreasing latitude and/ or elevation. Fish richnessrelative and diversity increased with increasing temporal variation in climate (temperature and/or precipitation), ambient nutrient concentrations (e.g. total nitrogen) in lakes, and woody vegetation (e.g. taiga forest) cover in hydrobasins, whereas taxon richness of macroinvertebrates and zooplankton decreased with increasing temporal variation in climate. 5. The similar patterns detected for richnessrelative of fish, macrophytes, and phytoplankton could be caused by similar responses to the environmental descriptors, and/or the beneficial effects of macrophytes as habitat structure. By creating habitat, macrophytes may increase fish diversity and production, which in turn may promote higher densities and probably more diverse assemblages of phytoplankton through trophic cascades. Lakes with greater fish richnessrelative tended to have greater average richnessrelative among FECs, suggesting that fish are a potential indicator for overall lake biodiversity. 6. Overall, the biodiversity patterns observed along the environmental gradients were trophic-level specific, indicating that an integrated food-web perspective may lead to a more holistic understanding of ecosystem biodiversity in future monitoring and management of high-latitude lakes. In future, monitoring should also focus on collecting more abundance data for fish and lower trophic levels in both benthic and pelagic habitats. This may require more concentrated sampling effort on fewer lakes at smaller spatial scales, while continuing to sample lakes distributed along environmental gradients.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/3018092&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/3018092&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0c8f969c0929ccb32701fa34fab9ea6d&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0c8f969c0929ccb32701fa34fab9ea6d&type=result"></script>');
-->
</script>
handle: 10508/10781
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/10781&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/10781&type=result"></script>');
-->
</script>
handle: 10793/1212 , 10793/1235
The children will design and create a poster that describes a fish (or animal from the ocean) that they would like to be. The children will describe their favourite fish’s appearance, its habitat and the food it likes to consume by participating in oral language, reading and writing activities. Tá na páistí chun dearadh agus cruthú póstaer a dhéanann cur síos ar an t-iasc (nó ainmhí ó na farraige) ba mhaith leo a bheith. Déanfaidh na páistí cur síos ar cuma, an gnáthóg agus an bia a itheann an t-iasc is fearr leo trí pháirt a ghlacadh i gíomhaíochtaí teanga labharha, léitheoireachta agus scríbhneoireachta.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10793/1212&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10793/1212&type=result"></script>');
-->
</script>
The Nekton Maldives Taxonomic Workshop took place at the Maniyafushi Research Station in the Maldives between 12 and 23 February 2023. This workshop had two primary objectives. Firstly, it aimed to identify species from biological samples and underwater imagery collected during the Nekton Maldives Mission in 2022. Secondly, it sought to facilitate training and knowledge exchange sessions between early career researchers from the Maldives and international taxonomists. These sessions were designed to share knowledge and introduce fundamental taxonomy concepts and enhance practical identification skills for common reef benthic groups and major zooplankton taxonomic groups. A total of 24 people from 10 different countries were directly or indirectly involved with the workshop comprising nine taxonomic experts, eleven trainees and four organisers. Collectively, we identified 278 biological specimens including potentially undescribed species of hydroids, black corals, sponges and octocorals, 318 morphotypes for underwater footage and zooplankton composition congruent with previous reports from the Indian Ocean Region. Next steps will involve depositing the specimens into a more a permanent facility to facilitate the process of specimen description and knowledge transfer.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=pensoft_____::393b90f966094f253ced7f7268fccd6c&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=pensoft_____::393b90f966094f253ced7f7268fccd6c&type=result"></script>');
-->
</script>
Despite being an abundant group of significant ecological importance the phylogenetic relationships of the Octocorallia remain poorly understood and very much understudied. We used 1132 bp of two mitochondrial protein-coding genes, nad2 and mtMutS (previously referred to as msh1), to construct a phylogeny for 161 octocoral specimens from the Atlantic, including both Isididae and non-Isididae species. We found that four clades were supported using a concatenated alignment. Two of these (A and B) were in general agreement with the of Holaxonia–Alcyoniina and Anthomastus–Corallium clades identified by previous work. The third and fourth clades represent a split of the Calcaxonia–Pennatulacea clade resulting in a clade containing the Pennatulacea and a small number of Isididae specimens and a second clade containing the remaining Calcaxonia. When individual genes were considered nad2 largely agreed with previous work with MtMutS also producing a fourth clade corresponding to a split of Isididae species from the Calcaxonia–Pennatulacea clade. It is expected these difference are a consequence of the inclusion of Isisdae species that have undergone a gene inversion in the mtMutS gene causing their separation in the MtMutS only tree. The fourth clade in the concatenated tree is also suspected to be a result of this gene inversion, as there were very few Isidiae species included in previous work tree and thus this separation would not be clearly resolved. A~larger phylogeny including both Isididae and non Isididae species is required to further resolve these clades.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::cbc9b103f3ea1137d526706d6cc51229&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::cbc9b103f3ea1137d526706d6cc51229&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::939d97de01b8d64c9d6a427f8964d438&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::939d97de01b8d64c9d6a427f8964d438&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::550ff08138eeba4ed48bb1c424a5ef87&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::550ff08138eeba4ed48bb1c424a5ef87&type=result"></script>');
-->
</script>
Snow is a potent insulator, influencing the temperature of the active layer and the permafrost in the Arctic region. However, our understanding of spatial patterns of snow properties and their interplay with vegetation remains limited due to scarcity of local and regional snow data. Furthermore, the duration, depth, and physical properties of the Arctic snow cover are changing with rising air temperature and new precipitation patterns. We study the spatial snow distribution and its drivers and consequences around the Trail Valley Creek research catchment in the Northwest Territories, Canada. Our dataset includes a 143 km² snow depth raster captured on April 2, 2023, at a 1-meter spatial resolution, as well as data from 13 spatially distributed loggers measuring air/snow temperature, soil surface temperature, and soil temperature at 8 cm depth from August 27, 2022, to August 9, 2023. Detailed information on vegetation types, structure, and soil properties at all locations is included. Our analysis covers the timing of soil freeze and thaw, snow and soil temperatures, and their correlation with vegetation characteristics, particularly focusing on April snow depth. Our findings underscore the pivotal role of snow in regulating soil temperature, making it a key driver for permafrost protection or thaw. The results reveal significant variability in April snow depth across the 13 study locations, ranging from no snow to 1.7 meters, resulting in winter minimum soil temperatures between -31°C and -4°C. The study confirms that thicker snow cover contributes to warmer soil temperatures. While the soil at 8 cm freezes uniformly in mid-October across all sites, snow patterns lead to high variability in soil thawing dates, which span one month between May 10 and June 08, 2023. Understanding the spatial patterns of snow depth, thermal properties, and timing is crucial for assessing the snow effect on soil temperature. The large range of winter soil temperatures, which we observed, may lead to differences in thaw depth development in the following summer and potentially to talik formation affecting permafrost stability.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::83840bde6a6c78ea8b6e88bea798f53d&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::83840bde6a6c78ea8b6e88bea798f53d&type=result"></script>');
-->
</script>
The 7th Data Science Symposium took place at Helmholtz-Zentrum Hereon, Geesthacht (Germany), on 27 and 28 June 2022. The Data Science Symposium is part of a series of symposia organized by AWI, GEOMAR and Hereon that was established in 2017. The focus of the symposium was on the following topics: • Artificial Intelligence/ Machine Learning in Earth System Sciences • Data Strategies and Exchange in POF IV • Collaborations and Initiatives • Towards Digital Twins and other Lighthouse Projects • Early Career – Science and Perspectives This book of abstracts contains all abstracts of all presentations, posters and live demos presented at the symposium. We thank all authors for their contributions to the Data Science Symposium No. 7.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7350280&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7350280&type=result"></script>');
-->
</script>
handle: 11250/3018092 , 11250/2660674 , 10138/351117
1. Arctic and sub-Arctic lakes in northern Europe are increasingly threatened by climate change, which can affect their biodiversity directly by shifting thermal and hydrological regimes, and indirectly by altering landscape processes and catchment vegetation. Most previous studies of northern lake biodiversity responses to environmental changes have focused on only a single organismal group. Investigations at whole-lake scales that integrate different habitats and trophic levels are currently rare, but highly necessary for future lake monitoring and management. 2. We analysed spatial biodiversity patterns of 74 sub-Arctic lakes in Norway, Sweden, Finland, and the Faroe Islands with monitoring data for at least three biological focal ecosystem components (FECs)—benthic diatoms, macrophytes, phytoplankton, littoral benthic macroinvertebrates, zooplankton, and fish—that covered both pelagic and benthic habitats and multiple trophic levels. 3. We calculated the richnessrelative (i.e. taxon richness of a FEC in the lake divided by the total richness of that FEC in all 74 lakes) and the biodiversity metrics (i.e. taxon richness, inverse Simpson index (diversity), and taxon evenness) of individual FECs using presence–absence and abundance data, respectively. We then investigated whether the FEC richnessrelative and biodiversity metrics were correlated with lake abiotic and geospatial variables. We hypothesised that (1) individual FECs would be more diverse in a warmer and wetter climate (e.g. at lower latitudes and/or elevations), and in hydrobasins with greater forest cover that could enhance the supply of terrestrial organic matter and nutrients that stimulated lake productivity; and (2) patterns in FEC responses would be coupled among trophic levels. 4. Results from redundancy analyses showed that the richnessrelative of phytoplankton, macrophytes, and fish decreased, but those of the intermediate trophic levels (i.e. macroinvertebrates and zooplankton) increased with decreasing latitude and/ or elevation. Fish richnessrelative and diversity increased with increasing temporal variation in climate (temperature and/or precipitation), ambient nutrient concentrations (e.g. total nitrogen) in lakes, and woody vegetation (e.g. taiga forest) cover in hydrobasins, whereas taxon richness of macroinvertebrates and zooplankton decreased with increasing temporal variation in climate. 5. The similar patterns detected for richnessrelative of fish, macrophytes, and phytoplankton could be caused by similar responses to the environmental descriptors, and/or the beneficial effects of macrophytes as habitat structure. By creating habitat, macrophytes may increase fish diversity and production, which in turn may promote higher densities and probably more diverse assemblages of phytoplankton through trophic cascades. Lakes with greater fish richnessrelative tended to have greater average richnessrelative among FECs, suggesting that fish are a potential indicator for overall lake biodiversity. 6. Overall, the biodiversity patterns observed along the environmental gradients were trophic-level specific, indicating that an integrated food-web perspective may lead to a more holistic understanding of ecosystem biodiversity in future monitoring and management of high-latitude lakes. In future, monitoring should also focus on collecting more abundance data for fish and lower trophic levels in both benthic and pelagic habitats. This may require more concentrated sampling effort on fewer lakes at smaller spatial scales, while continuing to sample lakes distributed along environmental gradients.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/3018092&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11250/3018092&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0c8f969c0929ccb32701fa34fab9ea6d&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::0c8f969c0929ccb32701fa34fab9ea6d&type=result"></script>');
-->
</script>
handle: 10508/10781
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/10781&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10508/10781&type=result"></script>');
-->
</script>
handle: 10793/1212 , 10793/1235
The children will design and create a poster that describes a fish (or animal from the ocean) that they would like to be. The children will describe their favourite fish’s appearance, its habitat and the food it likes to consume by participating in oral language, reading and writing activities. Tá na páistí chun dearadh agus cruthú póstaer a dhéanann cur síos ar an t-iasc (nó ainmhí ó na farraige) ba mhaith leo a bheith. Déanfaidh na páistí cur síos ar cuma, an gnáthóg agus an bia a itheann an t-iasc is fearr leo trí pháirt a ghlacadh i gíomhaíochtaí teanga labharha, léitheoireachta agus scríbhneoireachta.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10793/1212&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10793/1212&type=result"></script>');
-->
</script>
The Nekton Maldives Taxonomic Workshop took place at the Maniyafushi Research Station in the Maldives between 12 and 23 February 2023. This workshop had two primary objectives. Firstly, it aimed to identify species from biological samples and underwater imagery collected during the Nekton Maldives Mission in 2022. Secondly, it sought to facilitate training and knowledge exchange sessions between early career researchers from the Maldives and international taxonomists. These sessions were designed to share knowledge and introduce fundamental taxonomy concepts and enhance practical identification skills for common reef benthic groups and major zooplankton taxonomic groups. A total of 24 people from 10 different countries were directly or indirectly involved with the workshop comprising nine taxonomic experts, eleven trainees and four organisers. Collectively, we identified 278 biological specimens including potentially undescribed species of hydroids, black corals, sponges and octocorals, 318 morphotypes for underwater footage and zooplankton composition congruent with previous reports from the Indian Ocean Region. Next steps will involve depositing the specimens into a more a permanent facility to facilitate the process of specimen description and knowledge transfer.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=pensoft_____::393b90f966094f253ced7f7268fccd6c&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=pensoft_____::393b90f966094f253ced7f7268fccd6c&type=result"></script>');
-->
</script>
Despite being an abundant group of significant ecological importance the phylogenetic relationships of the Octocorallia remain poorly understood and very much understudied. We used 1132 bp of two mitochondrial protein-coding genes, nad2 and mtMutS (previously referred to as msh1), to construct a phylogeny for 161 octocoral specimens from the Atlantic, including both Isididae and non-Isididae species. We found that four clades were supported using a concatenated alignment. Two of these (A and B) were in general agreement with the of Holaxonia–Alcyoniina and Anthomastus–Corallium clades identified by previous work. The third and fourth clades represent a split of the Calcaxonia–Pennatulacea clade resulting in a clade containing the Pennatulacea and a small number of Isididae specimens and a second clade containing the remaining Calcaxonia. When individual genes were considered nad2 largely agreed with previous work with MtMutS also producing a fourth clade corresponding to a split of Isididae species from the Calcaxonia–Pennatulacea clade. It is expected these difference are a consequence of the inclusion of Isisdae species that have undergone a gene inversion in the mtMutS gene causing their separation in the MtMutS only tree. The fourth clade in the concatenated tree is also suspected to be a result of this gene inversion, as there were very few Isidiae species included in previous work tree and thus this separation would not be clearly resolved. A~larger phylogeny including both Isididae and non Isididae species is required to further resolve these clades.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::cbc9b103f3ea1137d526706d6cc51229&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::cbc9b103f3ea1137d526706d6cc51229&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::939d97de01b8d64c9d6a427f8964d438&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::939d97de01b8d64c9d6a427f8964d438&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::550ff08138eeba4ed48bb1c424a5ef87&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::550ff08138eeba4ed48bb1c424a5ef87&type=result"></script>');
-->
</script>
Snow is a potent insulator, influencing the temperature of the active layer and the permafrost in the Arctic region. However, our understanding of spatial patterns of snow properties and their interplay with vegetation remains limited due to scarcity of local and regional snow data. Furthermore, the duration, depth, and physical properties of the Arctic snow cover are changing with rising air temperature and new precipitation patterns. We study the spatial snow distribution and its drivers and consequences around the Trail Valley Creek research catchment in the Northwest Territories, Canada. Our dataset includes a 143 km² snow depth raster captured on April 2, 2023, at a 1-meter spatial resolution, as well as data from 13 spatially distributed loggers measuring air/snow temperature, soil surface temperature, and soil temperature at 8 cm depth from August 27, 2022, to August 9, 2023. Detailed information on vegetation types, structure, and soil properties at all locations is included. Our analysis covers the timing of soil freeze and thaw, snow and soil temperatures, and their correlation with vegetation characteristics, particularly focusing on April snow depth. Our findings underscore the pivotal role of snow in regulating soil temperature, making it a key driver for permafrost protection or thaw. The results reveal significant variability in April snow depth across the 13 study locations, ranging from no snow to 1.7 meters, resulting in winter minimum soil temperatures between -31°C and -4°C. The study confirms that thicker snow cover contributes to warmer soil temperatures. While the soil at 8 cm freezes uniformly in mid-October across all sites, snow patterns lead to high variability in soil thawing dates, which span one month between May 10 and June 08, 2023. Understanding the spatial patterns of snow depth, thermal properties, and timing is crucial for assessing the snow effect on soil temperature. The large range of winter soil temperatures, which we observed, may lead to differences in thaw depth development in the following summer and potentially to talik formation affecting permafrost stability.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::83840bde6a6c78ea8b6e88bea798f53d&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______999::83840bde6a6c78ea8b6e88bea798f53d&type=result"></script>');
-->
</script>
The 7th Data Science Symposium took place at Helmholtz-Zentrum Hereon, Geesthacht (Germany), on 27 and 28 June 2022. The Data Science Symposium is part of a series of symposia organized by AWI, GEOMAR and Hereon that was established in 2017. The focus of the symposium was on the following topics: • Artificial Intelligence/ Machine Learning in Earth System Sciences • Data Strategies and Exchange in POF IV • Collaborations and Initiatives • Towards Digital Twins and other Lighthouse Projects • Early Career – Science and Perspectives This book of abstracts contains all abstracts of all presentations, posters and live demos presented at the symposium. We thank all authors for their contributions to the Data Science Symposium No. 7.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7350280&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7350280&type=result"></script>');
-->
</script>