Der vorliegende Datansatz enthält umfassende Informationen zu SARS-CoV-2-Infektionen in Deutschland, die gemäß dem Infektionsschutzgesetze (IfSG) von den Gesundheitsämtern an das Robert Koch-Institut (RKI) gemeldet wurden. Die Daten umfassen Informationen zur Anzahl der bestätigten Fälle, Todesfälle und Genesungen, aus denen sich weitere Kennzahlen im Zusammenhang mit der COVID-19-Pandemie ableiten lassen. Der Datensatz wird täglich aktualisiert und enthält detaillierte Informationen auf Landkreisebene, die nach verschiedenen Altersgruppen aufgeschlüsselt sind. Die Bereitstellung des Datensatzes soll dazu beitragen, das Verständnis der COVID-19-Pandemie in Deutschland zu verbessern und die Berichterstattung, Forschung und Analyse in diesem Bereich zu unterstützen.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8092831&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8092831&type=result"></script>');
-->
</script>
Im Datensatz 'SARS-CoV-2 Infektionen in Deutschland' werden die tagesaktuellen Fallzahlen, der nach den Vorgaben des Infektionsschutzgesetzes - IfSG - von den Gesundheitsämtern in Deutschand gemeldeten positiven SARS-Cov-2 Infektionen, Todes- und Genesungsfälle bereitgestellt.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7312232&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7312232&type=result"></script>');
-->
</script>
This is data for: "Modelling the filtration efficiency of a woven fabric: The role of multiple lengthscales", on arXiv Files are (this is also in README file): 1) FinalFused.tif : stack of slices taken with confocal at Bristol by Ioatzin Rios de Anda. This is the imaging data of the fabric used 2) processDataTo3D_PAPER.py : Python code to analyse 1) to produce mask of fibre voxels needed for LB simulation, by Jake Wilkins 3) LBregionstack.tiff : image stack for region in LB simulations 4) masknx330ny280nz462_t10.txt : mask in right format to be read in to Palabos LB code to specify which voxels are fibre and so need bounce-back 5) Ioatzin3D.cpp : C++ code for Palabos LB. NB need Palabos LB code: https://palabos.unige.ch/, should go in directory "~/palabos-v2.2.0/examples/Ioatzin/3D ". Needs 4) 6) make_pkl.py : converts output of LB code into Python pickled format for .py codes below. 7) IoatzinDarcy_pkl.py : takes pickled output of LB code and computes Darcy k etc 8) traj2_pkledge.py : computes trajectories of particles and so filtration efficiency, needs pickled output of LBC code and 9) 9) lattice_params.yaml : parameter values for 7) and 8) 10) eff_filter_edges.txt : filtration efficiencies computed by 8) WITH inertia 11) eff_filter0Stokes.txt : filtration efficiencies computed by 8) WITHOUT inertia 12) plot_filtration.py : plots 10) and 11) 13) Final_render.mp4 : rotating animation showing region simulated by LB code, by Jake Wilkins 14) alpha_ofz.txt : alpha - fraction of fibres voxels as function of z 15) plot_justalpha.py : plots 14) 16) vtk01.vti : flow field velocity field in vti format - as used by Paraview 17) vel3D.pkl : flow field velocity field in Python's pkl format 18) slice_heatmap.py : produces heatmap of velocities in xy slice through the flow field 19) plot_sigma_streamlines.py : plots Sigma (curvature lengthscale) from 20), 21), 22), 23) 20) stream4.txt: streamline for flow field 21) stream5.txt: streamline for flow field 22) stream6.txt: streamline for flow field 23) stream7.txt: streamline for flow field 24) plot_Stokes.py : plots Stokes number as function of particle diameter 25) 0traj20.0_47.xyz : trajectory in format that Paraview can read 26) intraj20.0_47.xyz : another trajectory 27) streamlines_pkl.py : calculates streamlines, eg 20), 21), 22) and 23) 28) this README file Abstract of that work: During the COVID-19 pandemic, many millions have worn masks made of woven fabric, to reduce the risk of transmission of COVID-19. Masks are essentially air filters worn on the face, that should filter out as many of the dangerous particles as possible. Here the dangerous particles are the droplets containing virus that are exhaled by an infected person. Woven fabric is unlike the material used in standard air filters. Woven fabric consists of fibres twisted together into yarns that are then woven into fabric. There are therefore two lengthscales: the diameters of: (i) the fibre and (ii) the yarn. Standard air filters have only (i). To understand how woven fabrics filter, we have used confocal microscopy to take three dimensional images of woven fabric. We then used the image to perform Lattice Boltzmann simulations of the air flow through fabric. With this flow field we calculated the filtration efficiency for particles around a micrometre in diameter. We find that for particles in this size range, filtration efficiency is low ($\sim 10\%$) but increases with increasing particle size. These efficiencies are comparable to measurements made for fabrics. The low efficiency is due to most of the air flow being channeled through relatively large (tens of micrometres across) inter-yarn pores. So we conclude that our sampled fabric is expected to filter poorly due to the hierarchical structure of woven fabrics.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5552356&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5552356&type=result"></script>');
-->
</script>
Im Datensatz 'COVID-19-Todesfälle in Deutschland' werden die Todesfälle in Bezug auf COVID-19 in Deutschland bereitgestellt. Darüber hinaus wird neben der Anzahl der übermittelten Todesfälle der Fall-Verstorbenen-Anteil berechnet. Angaben zum Tod zählen zu den melde- und übermittlungspflichtigen Inhalten. Bei der Ermittlung von Todesfällen und der Bewertung der entsprechenden Informationen in den Gesundheitsämtern unterschiedlich vorgegangen. In der Folge könnte es einerseits zu einer Unterschätzung der Anzahl der Todesfälle, andererseits zu einer Überschätzung des Anteils der Verstorbenen einer Infektionskrankheit kommen. Ausführlich Hinweise zur Datenerhebung und Interpretation können der Datensatzdokumentation entnommen werden.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10677119&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10677119&type=result"></script>');
-->
</script>
Additional file 7: Supplementary table 7.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.23722257.v1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.23722257.v1&type=result"></script>');
-->
</script>
Additional file 1: Supplementary Figure 1. Schematic diagram of COVID-19 patient (n=37) follow-up, including disease onset, admission, stool sample collection, duration of hospital stay. “CoV” denotes patient with COVID-19. Stool specimens were serially collected for separate shotgun metagenomic sequencing of RNA and DNA virome; “SARS-CoV-2 PCR negative in nasopharyngeal test”: the first negative result for SARS-CoV-2 virus in two consecutive negative nasopharyngeal tests, upon which patient was then discharged.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14418168.v1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14418168.v1&type=result"></script>');
-->
</script>
Die Tagesdaten-CSV entspricht einem Auszug der Daten des DIVI-Intensivregisters. Die Datei enthält eine Aggregation der aktuellsten Meldungen pro Landkreis. Es werden die aktuell gemeldeten Anzahlen der COVID-19 Intensivfälle sowie die gemeldeten intensivmedizinischen Behandlungskapazitäten angezeigt. Die Tagesdaten-CSV liefert dabei ausschließlich einen Blick auf die Daten gemäß dem Stand des betrachteten Tages. Die Daten sind im situationsbedingten Kontext aufbereitet, damit sind verschiedene Tagesdaten-CSVs u.U. nicht direkt miteinander vergleichbar. Die aktuellsten Meldungen werden im gewählten Betrachtungszeitfenster über alle Meldebereiche und Standorte aufsummiert. Weitere Informationen sind zu finden unter https://www.intensivregister.de/#/faq
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1559::cab109ee47ca62560c878e136372ca1b&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1559::cab109ee47ca62560c878e136372ca1b&type=result"></script>');
-->
</script>
Abstract Background With the spread of COVID-19, the time-series prediction of COVID-19 has become a research hotspot. Unlike previous epidemics, COVID-19 has a new pattern of long-time series, large fluctuations, and multiple peaks. Traditional dynamical models are limited to curves with short-time series, single peak, smoothness, and symmetry. Secondly, most of these models have unknown parameters, which bring greater ambiguity and uncertainty. There are still major shortcomings in the integration of multiple factors, such as human interventions, environmental factors, and transmission mechanisms. Methods A dynamical model with only infected humans and removed humans was established. Then the process of COVID-19 spread was segmented using a local smoother. The change of infection rate at different stages was quantified using the continuous and periodic Logistic growth function to quantitatively describe the comprehensive effects of natural and human factors. Then, a non-linear variable and NO2 concentrations were introduced to qualify the number of people who have been prevented from infection through human interventions. Results The experiments and analysis showed the R2 of fitting for the US, UK, India, Brazil, Russia, and Germany was 0.841, 0.977, 0.974, 0.659, 0.992, and 0.753, respectively. The prediction accuracy of the US, UK, India, Brazil, Russia, and Germany in October was 0.331, 0.127, 0.112, 0.376, 0.043, and 0.445, respectively. Conclusion The model can not only better describe the effects of human interventions but also better simulate the temporal evolution of COVID-19 with local fluctuations and multiple peaks, which can provide valuable assistant decision-making information.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.c.5995770&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.c.5995770&type=result"></script>');
-->
</script>
Das Nowcasting erstellt eine Schätzung des Verlaufs der Anzahl von bereits erfolgten SARS-CoV-2-Erkrankungsfällen in Deutschland unter Berücksichtigung des Diagnose-, Melde- und Übermittlungsverzugs. Aufbauend auf dem Nowcasting kann eine Schätzung der zeitabhängigen Reproduktionszahl R durchgeführt werden. Die Reproduktionszahl beschreibt, wie viele Menschen eine infizierte Person im Mittel ansteckt. Sie kann nicht alleine als Maß für Wirksamkeit/Notwendigkeit von Maßnahmen herangezogen werden. Wichtig sind außerdem u.a. die absolute Zahl der täglichen Neuinfektionen sowie die Schwere der Erkrankungen. Die absolute Zahl der Neuinfektionen muss klein genug sein, um eine effektive Kontaktpersonennachverfolgung zu ermöglichen und die Kapazitäten von Intensivbetten nicht zu überlasten.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6566161&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6566161&type=result"></script>');
-->
</script>
Abstract Multivalent drugs targeting homo-oligomeric viral surface proteins, such as the SARS-CoV-2 trimeric spike (S) protein, have the potential to elicit more potent and broad-spectrum therapeutic responses than monovalent drugs by synergistically engaging multiple binding sites on viral targets. However, rational design and engineering of nanoscale multivalent protein drugs are still lacking. Here, we developed a computational approach to engineer self-assembling trivalent microproteins that simultaneously bind to the three receptor binding domains (RBDs) of the S protein. This approach involves four steps: structure-guided linker design, molecular simulation evaluation of self-assembly, experimental validation of self-assembly state, and functional testing. Using this approach, we first designed trivalent constructs of the microprotein miniACE2 (MP) with different trimerization scaffolds and linkers, and found that one of the constructs (MP-5ff) showed high trimerization efficiency, good conformational homogeneity, and strong antiviral neutralizing activity. With its trimerization unit (5ff), we then engineered a trivalent nanobody (Tr67) that exhibited potent and broad neutralizing activity against the dominant Omicron variants, including XBB.1 and XBB.1.5. Cryo-EM complex structure confirmed that Tr67 stably binds to all three RBDs of the Omicron S protein in a synergistic form, locking them in the “3-RBD-up” conformation that could block human receptor (ACE2) binding and potentially facilitate immune clearance. Therefore, our approach provides an effective strategy for engineering potent protein drugs against SARS-CoV-2 and other deadly coronaviruses. Graphical Abstract
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.c.7069197&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.c.7069197&type=result"></script>');
-->
</script>
Der vorliegende Datansatz enthält umfassende Informationen zu SARS-CoV-2-Infektionen in Deutschland, die gemäß dem Infektionsschutzgesetze (IfSG) von den Gesundheitsämtern an das Robert Koch-Institut (RKI) gemeldet wurden. Die Daten umfassen Informationen zur Anzahl der bestätigten Fälle, Todesfälle und Genesungen, aus denen sich weitere Kennzahlen im Zusammenhang mit der COVID-19-Pandemie ableiten lassen. Der Datensatz wird täglich aktualisiert und enthält detaillierte Informationen auf Landkreisebene, die nach verschiedenen Altersgruppen aufgeschlüsselt sind. Die Bereitstellung des Datensatzes soll dazu beitragen, das Verständnis der COVID-19-Pandemie in Deutschland zu verbessern und die Berichterstattung, Forschung und Analyse in diesem Bereich zu unterstützen.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8092831&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8092831&type=result"></script>');
-->
</script>
Im Datensatz 'SARS-CoV-2 Infektionen in Deutschland' werden die tagesaktuellen Fallzahlen, der nach den Vorgaben des Infektionsschutzgesetzes - IfSG - von den Gesundheitsämtern in Deutschand gemeldeten positiven SARS-Cov-2 Infektionen, Todes- und Genesungsfälle bereitgestellt.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7312232&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7312232&type=result"></script>');
-->
</script>
This is data for: "Modelling the filtration efficiency of a woven fabric: The role of multiple lengthscales", on arXiv Files are (this is also in README file): 1) FinalFused.tif : stack of slices taken with confocal at Bristol by Ioatzin Rios de Anda. This is the imaging data of the fabric used 2) processDataTo3D_PAPER.py : Python code to analyse 1) to produce mask of fibre voxels needed for LB simulation, by Jake Wilkins 3) LBregionstack.tiff : image stack for region in LB simulations 4) masknx330ny280nz462_t10.txt : mask in right format to be read in to Palabos LB code to specify which voxels are fibre and so need bounce-back 5) Ioatzin3D.cpp : C++ code for Palabos LB. NB need Palabos LB code: https://palabos.unige.ch/, should go in directory "~/palabos-v2.2.0/examples/Ioatzin/3D ". Needs 4) 6) make_pkl.py : converts output of LB code into Python pickled format for .py codes below. 7) IoatzinDarcy_pkl.py : takes pickled output of LB code and computes Darcy k etc 8) traj2_pkledge.py : computes trajectories of particles and so filtration efficiency, needs pickled output of LBC code and 9) 9) lattice_params.yaml : parameter values for 7) and 8) 10) eff_filter_edges.txt : filtration efficiencies computed by 8) WITH inertia 11) eff_filter0Stokes.txt : filtration efficiencies computed by 8) WITHOUT inertia 12) plot_filtration.py : plots 10) and 11) 13) Final_render.mp4 : rotating animation showing region simulated by LB code, by Jake Wilkins 14) alpha_ofz.txt : alpha - fraction of fibres voxels as function of z 15) plot_justalpha.py : plots 14) 16) vtk01.vti : flow field velocity field in vti format - as used by Paraview 17) vel3D.pkl : flow field velocity field in Python's pkl format 18) slice_heatmap.py : produces heatmap of velocities in xy slice through the flow field 19) plot_sigma_streamlines.py : plots Sigma (curvature lengthscale) from 20), 21), 22), 23) 20) stream4.txt: streamline for flow field 21) stream5.txt: streamline for flow field 22) stream6.txt: streamline for flow field 23) stream7.txt: streamline for flow field 24) plot_Stokes.py : plots Stokes number as function of particle diameter 25) 0traj20.0_47.xyz : trajectory in format that Paraview can read 26) intraj20.0_47.xyz : another trajectory 27) streamlines_pkl.py : calculates streamlines, eg 20), 21), 22) and 23) 28) this README file Abstract of that work: During the COVID-19 pandemic, many millions have worn masks made of woven fabric, to reduce the risk of transmission of COVID-19. Masks are essentially air filters worn on the face, that should filter out as many of the dangerous particles as possible. Here the dangerous particles are the droplets containing virus that are exhaled by an infected person. Woven fabric is unlike the material used in standard air filters. Woven fabric consists of fibres twisted together into yarns that are then woven into fabric. There are therefore two lengthscales: the diameters of: (i) the fibre and (ii) the yarn. Standard air filters have only (i). To understand how woven fabrics filter, we have used confocal microscopy to take three dimensional images of woven fabric. We then used the image to perform Lattice Boltzmann simulations of the air flow through fabric. With this flow field we calculated the filtration efficiency for particles around a micrometre in diameter. We find that for particles in this size range, filtration efficiency is low ($\sim 10\%$) but increases with increasing particle size. These efficiencies are comparable to measurements made for fabrics. The low efficiency is due to most of the air flow being channeled through relatively large (tens of micrometres across) inter-yarn pores. So we conclude that our sampled fabric is expected to filter poorly due to the hierarchical structure of woven fabrics.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5552356&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5552356&type=result"></script>');
-->
</script>
Im Datensatz 'COVID-19-Todesfälle in Deutschland' werden die Todesfälle in Bezug auf COVID-19 in Deutschland bereitgestellt. Darüber hinaus wird neben der Anzahl der übermittelten Todesfälle der Fall-Verstorbenen-Anteil berechnet. Angaben zum Tod zählen zu den melde- und übermittlungspflichtigen Inhalten. Bei der Ermittlung von Todesfällen und der Bewertung der entsprechenden Informationen in den Gesundheitsämtern unterschiedlich vorgegangen. In der Folge könnte es einerseits zu einer Unterschätzung der Anzahl der Todesfälle, andererseits zu einer Überschätzung des Anteils der Verstorbenen einer Infektionskrankheit kommen. Ausführlich Hinweise zur Datenerhebung und Interpretation können der Datensatzdokumentation entnommen werden.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10677119&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10677119&type=result"></script>');
-->
</script>
Additional file 7: Supplementary table 7.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.23722257.v1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.23722257.v1&type=result"></script>');
-->
</script>