doi: 10.26138/sxs:bbh:1399v1.1 , 10.26138/sxs:bbh:1399v1.4 , 10.26138/sxs:bbh:1399v2.0 , 10.5281/zenodo.13173048 , 10.26138/sxs:bbh:1399v1.2 , 10.5281/zenodo.2554550 , 10.5281/zenodo.13173049 , 10.26138/sxs:bbh:1399 , 10.26138/sxs:bbh:1399v1.3 , 10.26138/sxs:bbh:1399v1.5 , 10.5281/zenodo.2554551 , 10.5281/zenodo.2626490 , 10.5281/zenodo.3315859 , 10.5281/zenodo.2638666 , 10.5281/zenodo.3274491
doi: 10.26138/sxs:bbh:1399v1.1 , 10.26138/sxs:bbh:1399v1.4 , 10.26138/sxs:bbh:1399v2.0 , 10.5281/zenodo.13173048 , 10.26138/sxs:bbh:1399v1.2 , 10.5281/zenodo.2554550 , 10.5281/zenodo.13173049 , 10.26138/sxs:bbh:1399 , 10.26138/sxs:bbh:1399v1.3 , 10.26138/sxs:bbh:1399v1.5 , 10.5281/zenodo.2554551 , 10.5281/zenodo.2626490 , 10.5281/zenodo.3315859 , 10.5281/zenodo.2638666 , 10.5281/zenodo.3274491
Simulation of a black-hole binary system evolved by the SpEC code.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26138/sxs:bbh:1399v1.1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26138/sxs:bbh:1399v1.1&type=result"></script>');
-->
</script>
doi: 10.26138/sxs:bbh:0662v1.2 , 10.26138/sxs:bbh:0662 , 10.26138/sxs:bbh:0662v2.0 , 10.26138/sxs:bbh:0662v1.5 , 10.26138/sxs:bbh:0662v1.3 , 10.5281/zenodo.13161918 , 10.26138/sxs:bbh:0662v1.4 , 10.5281/zenodo.13161919 , 10.5281/zenodo.1237243 , 10.5281/zenodo.1237244 , 10.5281/zenodo.3275544 , 10.5281/zenodo.2639220 , 10.5281/zenodo.2621943 , 10.5281/zenodo.3323699
doi: 10.26138/sxs:bbh:0662v1.2 , 10.26138/sxs:bbh:0662 , 10.26138/sxs:bbh:0662v2.0 , 10.26138/sxs:bbh:0662v1.5 , 10.26138/sxs:bbh:0662v1.3 , 10.5281/zenodo.13161918 , 10.26138/sxs:bbh:0662v1.4 , 10.5281/zenodo.13161919 , 10.5281/zenodo.1237243 , 10.5281/zenodo.1237244 , 10.5281/zenodo.3275544 , 10.5281/zenodo.2639220 , 10.5281/zenodo.2621943 , 10.5281/zenodo.3323699
Simulation of a black-hole binary system evolved by the SpEC code.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26138/sxs:bbh:0662v1.2&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26138/sxs:bbh:0662v1.2&type=result"></script>');
-->
</script>
Individual Kimura distances of RTE1_Sar. (CSV 44.7 kb)
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.8207201.v1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.8207201.v1&type=result"></script>');
-->
</script>
doi: 10.26138/sxs:bbh:0397v1.4 , 10.26138/sxs:bbh:0397v1.3 , 10.26138/sxs:bbh:0397v2.0 , 10.26138/sxs:bbh:0397v1.5 , 10.5281/zenodo.13168839 , 10.26138/sxs:bbh:0397v1.2 , 10.5281/zenodo.13168838 , 10.5281/zenodo.1236539 , 10.26138/sxs:bbh:0397 , 10.5281/zenodo.2625865 , 10.5281/zenodo.2642315 , 10.5281/zenodo.1236540 , 10.5281/zenodo.3274935 , 10.5281/zenodo.3319759
doi: 10.26138/sxs:bbh:0397v1.4 , 10.26138/sxs:bbh:0397v1.3 , 10.26138/sxs:bbh:0397v2.0 , 10.26138/sxs:bbh:0397v1.5 , 10.5281/zenodo.13168839 , 10.26138/sxs:bbh:0397v1.2 , 10.5281/zenodo.13168838 , 10.5281/zenodo.1236539 , 10.26138/sxs:bbh:0397 , 10.5281/zenodo.2625865 , 10.5281/zenodo.2642315 , 10.5281/zenodo.1236540 , 10.5281/zenodo.3274935 , 10.5281/zenodo.3319759
Simulation of a black-hole binary system evolved by the SpEC code.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26138/sxs:bbh:0397v1.4&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26138/sxs:bbh:0397v1.4&type=result"></script>');
-->
</script>
Additional file 3. Micro-habitat colonization and age-dependent incidence: Caenorhabditis colonization of orange bait samples distributed at 72 spots along trail system. At each of the 72 spots (Parare, Nouragues Natural Reserve), three baits were distributed (i.e. subsamples, labelled a, b, c) approximately 1 meter apart from each other. See also Additional file 7.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.5721484.v1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.5721484.v1&type=result"></script>');
-->
</script>
doi: 10.5061/dryad.22v00
The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance. EGR1_dataNumber of EGR1 neurons/mm2 in the NCM, CMM and IC.preference_score_by_maleIDAverage preference scores of all females tested on each male stimulus.preference_scores_all_femalesraw data for call back preference tests for normally-reared and song-naive females tested on stimuli from different malespreference_score_vs_song_measuresPercent difference for measures of song between courtship and non-courtship singing. Measures include the number of introductory notes and motifs, syllable entropy, CV of the fundamental frequency and song tempo (motif duration).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.22v00&type=result"></script>');
-->
</script>
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.22v00&type=result"></script>');
-->
</script>
Simulation of a black-hole binary system evolved by the SpEC code.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1214437&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1214437&type=result"></script>');
-->
</script>
1.The question of when to monitor and when to act is fundamental to applied ecology, and notoriously difficult to answer. Value of information (VOI) theory holds great promise to help answer this question for many management problems. However, VOI theory in applied ecology has only been demonstrated in single-decision problems, and has lacked explicit links between monitoring and management costs. 2.Here, we present an extension of VOI theory for solving multi-unit decisions of whether to monitor before managing, while explicitly accounting for monitoring costs. Our formulation helps to choose the optimal monitoring/management strategy among groups of management units (e.g. species, habitat patches), and can be used to examine the benefits of partial and repeat monitoring. 3.To demonstrate our approach, we use case simulated studies of single-species protection that must choose among potential habitat areas, and classification and management of multiple species threatened with extinction. We provide spreadsheets and code to illustrate the calculations and facilitate application. Our case studies demonstrate the utility of predicting the number of units with a given outcome for problems with probabilities of discrete states, and the efficiency of having a flexible approach to manage according to monitoring outcomes. 4.Synthesis and applications. The decision to act or gather more information can have serious consequences for management. No decision, including the decision to monitor, is risk-free. Our multi-unit expansion of Value of Information (VOI) theory can reduce the risk in monitoring/acting decisions for many applied ecology problems. While our approach cannot account for the potential value of discovering previously unknown threats or ecological processes via monitoring programs, it can provide quantitative guidance on whether to monitor before acting, and which monitoring/management actions are most likely to meet management objectives. Multi-unit VOI functionsCode to simulate and analyze data for multi-unit value of information (VOI) problems in Bennett et al. (J. Appl. Ecol.)voi functions multi unit.txt
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.r464h5d&type=result"></script>');
-->
</script>
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.r464h5d&type=result"></script>');
-->
</script>
Active sensing has been well documented in animals that use echolocation and electrolocation. Active photolocation, or active sensing using light, has received much less attention, and only in bioluminescent nocturnal species. However, evidence has suggested the diurnal triplefin Tripterygion delaisi uses controlled iris radiance, termed ocular sparks, for prey detection. While this form of diurnal active photolocation was behaviourally described, a study exploring the physical process would provide compelling support for this mechanism. In this paper, we investigate the conditions under which diurnal active photolocation could assist T. delaisi in detecting potential prey. In the field, we sampled gammarids (genus Cheirocratus) and characterized the spectral properties of their eyes, which possess strong directional reflectors. In the laboratory, we quantified ocular sparks size and their angle-dependent radiance. Combined with environmental light measurements and known properties of the visual system of T. delaisi, we modeled diurnal active photolocation under various scenarios. Our results corroborate that diurnal active photolocation should help T. delaisi detect gammarids at distances relevant to foraging, 4.5 cm under favourable conditions and up to 2.5 cm under average conditions. To determine the prevalence of diurnal active photolocation for micro-prey, we encourage further theoretical and empirical work. Average gammarid body reflectanceSpectrophotometric data for body reflectance of Cheirocratus gammaridsAverage gammarid body transmissionSpectrophotometric transmission measurements of Cheirocratus gammarid bodyBackground reflectance Haliopteris filicianaSpectrophotometric measurements of Haliopteris filicianaCoaxial reflectance values categoricalReflective properties of Gammarid eyes measured with coaxial light sourceDownwelling and sidewelling illuminant for analysesDownwelling and sidewelling light fieldsEye reflectance conversion values categoricalConversion factors to produce non-coaxial reflectance values from co-axial reflectance values for gammarid eyesOcular media valuesTransmission properties of the ocular media of Tripterigyon delaisiOcular spark conversion on continuous scaleConversion curves for transforming downwelling irradiance into ocular spark radianceSA scores Gammarid as perceived by Td pupilSolid angle of the gammarid eye as perceived from the pupil of T. delaisi based on the interaction distanceSA scores Os as perceived by Gammarid eye MATRIXSolid angles of the Ocular spark from T delaisi as perceived by the gammarid eye based on the interaction distance
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.nf94810&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.nf94810&type=result"></script>');
-->
</script>
Background: The origin of powered avian flight was a locomotor innovation that expanded the ecological potential of maniraptoran dinosaurs, leading to remarkable variation in modern birds (Neornithes). The avian sternum is the anchor for the major flight muscles and, despite varying widely in morphology, has not been extensively studied from evolutionary or functional perspectives. We quantify sternal variation across a broad phylogenetic scope of birds using 3D geometric morphometrics methods. Using this comprehensive dataset, we apply phylogenetically informed regression approaches to test hypotheses of sternum size allometry and the correlation of sternal shape with both size and locomotory capabilities, including flightlessness and the highly varying flight and swimming styles of Neornithes. Results: We find evidence for isometry of sternal size relative to body mass and document significant allometry of sternal shape alongside important correlations with locomotory capability, reflecting the effects of both body shape and musculoskeletal variation. Among these, we show that a large sternum with a deep or cranially projected sternal keel is necessary for powered flight in modern birds, that deeper sternal keels are correlated with slower but stronger flight, robust caudal sternal borders are associated with faster flapping styles, and that narrower sterna are associated with running abilities. Correlations between shape and locomotion are significant but show weak explanatory power, indicating that although sternal shape is broadly associated with locomotory ecology, other unexplored factors are also important. Conclusions: These results display the ecological importance of the avian sternum for flight and locomotion by providing a novel understanding of sternum form and function in Neornithes. Our study lays the groundwork for estimating the locomotory abilities of paravian dinosaurs, the ancestors to Neornithes, by highlighting the importance of this critical element for avian flight, and will be useful for future work on the origin of flight along the dinosaur-bird lineage.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x3ffbg7jj&type=result"></script>');
-->
</script>
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x3ffbg7jj&type=result"></script>');
-->
</script>
doi: 10.26138/sxs:bbh:1399v1.1 , 10.26138/sxs:bbh:1399v1.4 , 10.26138/sxs:bbh:1399v2.0 , 10.5281/zenodo.13173048 , 10.26138/sxs:bbh:1399v1.2 , 10.5281/zenodo.2554550 , 10.5281/zenodo.13173049 , 10.26138/sxs:bbh:1399 , 10.26138/sxs:bbh:1399v1.3 , 10.26138/sxs:bbh:1399v1.5 , 10.5281/zenodo.2554551 , 10.5281/zenodo.2626490 , 10.5281/zenodo.3315859 , 10.5281/zenodo.2638666 , 10.5281/zenodo.3274491
doi: 10.26138/sxs:bbh:1399v1.1 , 10.26138/sxs:bbh:1399v1.4 , 10.26138/sxs:bbh:1399v2.0 , 10.5281/zenodo.13173048 , 10.26138/sxs:bbh:1399v1.2 , 10.5281/zenodo.2554550 , 10.5281/zenodo.13173049 , 10.26138/sxs:bbh:1399 , 10.26138/sxs:bbh:1399v1.3 , 10.26138/sxs:bbh:1399v1.5 , 10.5281/zenodo.2554551 , 10.5281/zenodo.2626490 , 10.5281/zenodo.3315859 , 10.5281/zenodo.2638666 , 10.5281/zenodo.3274491
Simulation of a black-hole binary system evolved by the SpEC code.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26138/sxs:bbh:1399v1.1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |