handle: 20.500.12079/52669
Sorption-Enhanced Steam Methane Reforming (SE-SMR) is a promising technology for effective production of hydrogen with simultaneous CO2 capture from conventional fuels (e.g. methane, coal) and alternative fuels (e.g. biomass). SE-SMR combines steam methane reforming reaction and water-gas shift conversion reaction with a high temperature CO2 sorption system using a mixture of solid catalyst and sorbent. In this work, a methodology that combines Taguchi robust Design of Experiments (DoE) with previously validated CFD simulations [19] is presented. The main objective is to carry on a multi-criteria analysis of the effect of different sorbents and pretreatments and operation parameters in the response of the 500 kWth bubbling fluidized bed (BFB) reactor installed in the ZECOMIX (Zero Emissions of CarbOn with MIXed technologies) research infrastructure of ENEA. The effect of different sorbents (i.e. naturally occurring dolomite and synthetic CaO-Ca12Al14O33) and pretreatment seems to be negligible at high scales compared with heat and mass transfer mechanisms. Other parameters (i.e. temperature, pressure, particle diameter, gas velocity, bed height, presence of catalyst and sorbent, treatment of sorbent, syngas composition) have been also evaluated. The present methodology can be a useful approach for a preliminary design and optimization of a full-scale SE-SMR reactors.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.01.003&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 34 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.01.003&type=result"></script>');
-->
</script>
handle: 11590/353569 , 20.500.12079/6169
About 10 % of the land surface on Earth is covered by glacier ice, with an estimated total volume equivalent to about 66 m of potential sea-level rise. Almost the totality (99 %) of this volume is locked in the polar ice sheets, while less than 1 % forms all the other mountain glaciers and ice caps. In the last three decades, the general retreat of the mountain glaciers and the accelerated flow and ice loss from several outlet glaciers draining the Greenland and the Antarctic ice sheets came to general attention as a major evidence of climate warming and as a potential contribution to the sea-level rise, to local shortage of water resources and to other environmental risks. Here, we present a short review of the most recent data and assessments on the present status and on trends of glaciers and polar ice sheets. The Greenland ice sheet (12 % of total glacier ice volume) over the last three decades showed an increase of the extent of the surface melt area and an acceleration of many marine-terminating glaciers; as a consequence, the ice sheet is losing ice at an increasing rate that reached -263 ± 30 Gt/year in the 2005-2010 time interval, equivalent to a sea-level rise of 0.72 ± 0.08 mm/year. The much larger, higher and colder composite Antarctic ice sheet (87 % of total glacier ice volume), in the same 2005-2010 time interval, had an ice loss of -81 ± 37 Gt/year. Mountain glaciers and ice caps are retreating in all the major glacierized regions, with the exception of a few mountain areas where contrasting patterns have been observed. Although containing less than 1 % of the total glacier ice, mountain glaciers and ice caps suffered a total ice loss of -259 ± 28 Gt/year in the period 2003-2009, equivalent to a sea-level rise of 0.71 ± 0.08 mm/year. The overall contribution of glaciers and ice sheets is estimated equivalent to a sea-level rise of 1.50 ± 0.16 mm/year for the period 2003-2009, or about 60 % of the total sea-level rise in the same period. Various estimates of the total glacier contribution to the sea-level rise by the end of the twenty-first century have been recently proposed, ranging from a few decimeters to 2 m, with most plausible projections at about 0.5 m. Most probably Greenland, the Antarctic Peninsula and the West Antarctic ice sheet will continue to lose ice, while the sign of the East Antarctica contribution is uncertain. Mountain glaciers will most likely continue to lose ice, although at different rates in the various mountain regions. For the European Alps and the Southern Alps (New Zealand), a loss of more than 70 % of their present volume is expected by the end of the twenty-first century. The glaciers' contraction in the mountain areas may cause slope failures, debris mobilization, outburst floods from glacial lakes, and water deficits, particularly in the summer season, in the arid zones in the coming decades. Together with other changes occurring in the cryosphere such as the Arctic sea-ice reduction, the snow cover decline and the permafrost degradation, the glacier retreat is considered part of a larger picture of environmental changes, directly or indirectly caused or increased by the human impact, leading to new environmental conditions, thus deserving to be indicated as the Anthropocene. Still more open to future responses is the consideration if the ongoing glacier reduction and the rise of the sea level will contribute to leave such a footprint in the geologic record as to require a new stratigraphic unit, a new time epoch in the billion years long history of the Earth. © 2013 Accademia Nazionale dei Lincei.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12210-013-0255-z&type=result"></script>');
-->
</script>
Green |
citations | 7 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12210-013-0255-z&type=result"></script>');
-->
</script>
Protein mussel-inspired adhesive polymers, characterized by the presence of catechol groups, possess superior muco-adhesive properties and have great potentiality in wound healing. Suitable materials for wound dressing should properly combine muco-adhesiveness and antimicrobial activity. In this work, catechol-functionalized chitosan was obtained by reaction with hydrocaffeic acid (HCAF), in order to investigate how catechol introduction at different content could affect the intrinsic antimicrobial activity of the polymer itself. Unexpectedly, an enhancement of chitosan antimicrobial activity was observed after catechol functionalization, with a fourfold reduction in the polymer minimum inhibitory concentration versus Staphylococcus epidermidis. Additionally, a commercial wound dressing coated with one of the synthesized CS-HCAF derivatives showed a significant reduction in the adhesion of S. epidermidis compared to the uncoated dressing (3-log reduction). The CS-HCAF derivatives also showed an interesting antioxidant property (EC
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2017.09.073&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 80 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2017.09.073&type=result"></script>');
-->
</script>
doi: 10.3390/w13182597
handle: 11570/3211579 , 10447/584176 , 20.500.12079/62346
Areas of the Mediterranean Sea are dynamic habitats in which human activities have been conducted for centuries and which feature micro-tidal environments with about 0.40 m of range. For this reason, human settlements are still concentrated along a narrow coastline strip, where any change in the sea level and coastal dynamics may impact anthropic activities. We analyzed light detection and ranging (LiDAR) and Copernicus Earth observation data. The aim of this research is to provide estimates and detailed maps (in three coastal plain of Sardinia (Italy) and in the Pontina Plain (southern Latium, Italy) of: (i) the past marine transgression occurred during MIS 5.5 highstand 119 kyrss BP; (ii) the coastline regression occurred during the last glacial maximum MIS 2 (21.5 krs cal BP); and (iii) the potential marine submersion for 2100 and 2300. The objective of this multidisciplinary study is to provide maps of sea level rise future scenarios using the IPCC RCP 8.5 2019 projections and glacio-hydro-isostatic movements for the above selected coastal zones (considered tectonically stable), which are the locations of touristic resorts, railways and heritage sites. We estimated a potential loss of land for the above areas of between about 146 km2 (IPCC 2019-RCP8.5 scenario) and 637 km2 along a coastline length of about 268 km.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13182597&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 5 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13182597&type=result"></script>');
-->
</script>
handle: 11591/363404 , 20.500.12079/2981
In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative to fossil fuels. Gasification is the thermochemical conversion of an organic material into a valuable gaseous product, called syngas, and a solid product, called char. The biomass gasification represents an efficient process for the production of power and heat and the production of hydrogen and second-generation biofuels. This paper deals with the state of the art biomass gasification technologies, evaluating advantages and disadvantages, the potential use of the syngas and the application of the biomass gasification. Syngas cleaning though fundamental to evaluate any gasification technology is not included in this paper since; in the authors' opinion, a dedicated review is necessary.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jechem.2015.11.005&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 671 | |
popularity | Top 0.1% | |
influence | Top 1% | |
impulse | Top 0.1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jechem.2015.11.005&type=result"></script>');
-->
</script>
handle: 11573/1679363 , 20.500.12079/75070
The real environment impacts the fuel and energy consumption of any vehicle: technology, physical and social phenomena, traffic, drivers’ behaviour, and so on; many of them are difficult to quantify. The authors’ methodology was used to test the real impact of vehicles in “standard” urban conditions, and many generations of hybrid powertrains are compared. One of the latest performance indexes is the percentage of time the vehicle runs with zero emissions (ZEV). For example, the hybrid vehicle tested ran up to 80% with no emissions and fuel consumption below 3 L per 100 km. A few energy performance indicators were compared between five vehicles: one battery electric vehicle (BEV), two hybrid gasoline–electric vehicles (HEVs), and two traditional vehicles (one diesel and one gasoline). Their potential to use only renewable energy is unrivalled, but today’s vehicles’ performances favour hybrid power trains. This paper summarises the most sustainable powertrain for urban use by comparing experimental data from on-road testing. It also evaluates the benefits of reducing emissions by forecasting the Italian car fleet of 2025 and three use cases of the evolution of car fleets, with a focus on Rome.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics12040941&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics12040941&type=result"></script>');
-->
</script>
Single primer enrichment technology (SPET) is a new, robust, and customizable solution for targeted genotyping. Unlike genotyping by sequencing (GBS), and like DNA chips, SPET is a targeted genotyping technology, relying on the sequencing of a region flanking a primer. Its reliance on single primers, rather than on primer pairs, greatly simplifies panel design, and allows higher levels of multiplexing than PCR-based genotyping. Thanks to the sequencing of the regions surrounding the target SNP, SPET allows the discovery of thousands of closely linked, novel SNPs. In order to assess the potential of SPET for high-throughput genotyping in plants, a panel comprising 5k target SNPs, designed both on coding regions and introns/UTRs, was developed for tomato and eggplant. Genotyping of two panels composed of 400 tomato and 422 eggplant accessions, comprising both domesticated material and wild relatives, generated a total of 12,002 and 30,731 high confidence SNPs, respectively, which comprised both target and novel SNPs in an approximate ratio of 1:1.6, and 1:5.5 in tomato and eggplant, respectively. The vast majority of the markers was transferrable to related species that diverged up to 3.4 million years ago (
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2019.01005&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 56 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2019.01005&type=result"></script>');
-->
</script>
handle: 11588/947842 , 20.500.12079/67953
Perovskite solar cells (PSCs) have the potential for widespread application, but challenges remain for a reliable characterization of their performance. Standardized protocols for measuring and reporting are still debated. Focusing on the short circuit current density (J SC), current–voltage characteristics (J–V) and external quantum efficiency (EQE) are collected to estimate the parameter. Still, they often provide a mismatch above 1 mA cm−2, resulting in a possible 5% or higher error. Combining experimental data and optical simulations, it is demonstrated that the EQE can provide a reliable estimate of the J SC that could otherwise easily be overestimated by J–V. With access to the internally transmitted light through simulations, an upper limit for EQE is defined depending on the front layers. Details on the origin of the spectral shape and contributions to the optical losses are obtained with further optical simulations, providing hints for cell optimization to achieve a photocurrent gain. The authors use solution‐processed n‐i‐p PSCs with triple‐cation mixed‐halide absorbers as demonstrators and ultimately come to the proposal of an upgrade of the present best practices in PSC efficiency measurements. Still, the approach and conclusions are general and apply to cells with all designs and chemical formulations.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202200748&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 19 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202200748&type=result"></script>');
-->
</script>
handle: 20.500.12079/5726
This paper gives a detailed technical overview on some new sensing technologies for environmental sustainability in the context of the smart cities. COST Action TD1105 EuNetAir is the European networking framework to discuss a research roadmap for new sustainable technologies applied to the air quality monitoring, indoor/outdoor energy efficiency, odour monitoring, CO2 detection for industrial applications, and automotive air quality measurements. The main aim of the concerted Action EuNetAir, funded by COST EU program, is to create an international network of world-class experts in a multidisciplinary approach to define challenging research and innovation needs related to the new sensing technologies for air-pollution and environmental sustainability. The key-technologies for supporting environmental sustainability are the low-cost, low-power and accurate sensors to provide pervasive technologies distributed in the smart cities by engaging citizens' community for enhanced awareness in the clean environment and green energy. These efforts impact on future improved quality of life in Europe supporting green-economy and sustainable development. © 2014 IEEE.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icsens.2014.6984918&type=result"></script>');
-->
</script>
Green |
citations | 7 | |
popularity | Average | |
influence | Top 10% | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icsens.2014.6984918&type=result"></script>');
-->
</script>
handle: 20.500.12079/4718
During the pre-conceptual design phase of DEMO, different alternatives have been explored to be implemented as tritium extraction and removal system (TERS) for the blanket concepts considered in EUROfusion. The TERS is conceived to extract tritium from the breeder and to route it to the Tritium Plant for final processing. A careful review showed that those blankets operated with PbLi should use the permeation against vacuum (PAV) technique as primary option which is based on a one-step, fully continuous procedure. In this paper, a conceptual design of the TERS for the dual coolant lithium lead (DCLL) breeding blanket is presented, based on the European DEMO2015 layout (18 sectors, 2037 MW fusion power). The P&ID of the proposed TERS, integrated in the DCLL-PbLi loop, includes valves and instrumentation, as well as a revised design of the DCLL-PAV. The dimensioning of the permeator considered a tritium extraction efficiency of 80%. An exhaustive investigation on the vacuum system needed for the PAV is also presented. The choice of the most promising vacuum systems took into account the reliability and tritium compatibility of both high and rough pumps. Their pumping requirements, which are dependent on the PAV efficiency, tritium solubility and tritium partial pressure in the loop, are also discussed in this work. © EURATOM 2018.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-4326/aacb89&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 27 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-4326/aacb89&type=result"></script>');
-->
</script>
handle: 20.500.12079/52669
Sorption-Enhanced Steam Methane Reforming (SE-SMR) is a promising technology for effective production of hydrogen with simultaneous CO2 capture from conventional fuels (e.g. methane, coal) and alternative fuels (e.g. biomass). SE-SMR combines steam methane reforming reaction and water-gas shift conversion reaction with a high temperature CO2 sorption system using a mixture of solid catalyst and sorbent. In this work, a methodology that combines Taguchi robust Design of Experiments (DoE) with previously validated CFD simulations [19] is presented. The main objective is to carry on a multi-criteria analysis of the effect of different sorbents and pretreatments and operation parameters in the response of the 500 kWth bubbling fluidized bed (BFB) reactor installed in the ZECOMIX (Zero Emissions of CarbOn with MIXed technologies) research infrastructure of ENEA. The effect of different sorbents (i.e. naturally occurring dolomite and synthetic CaO-Ca12Al14O33) and pretreatment seems to be negligible at high scales compared with heat and mass transfer mechanisms. Other parameters (i.e. temperature, pressure, particle diameter, gas velocity, bed height, presence of catalyst and sorbent, treatment of sorbent, syngas composition) have been also evaluated. The present methodology can be a useful approach for a preliminary design and optimization of a full-scale SE-SMR reactors.