handle: 20.500.12079/7864
The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the sub-channels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with sub-channel Reynolds number in the range Resc=10^3-10^4 and heat flux in the range q''=50-500[kW/m2]. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt numbers were also calculated with two different definitions. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for rod bundles. Local Nusselt numbers in peripheral ranks are lower, due to the presence of the hexagonal external wrap which affects the temperature profile.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::c7c5d2158d0e99914162310d25924d66&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::c7c5d2158d0e99914162310d25924d66&type=result"></script>');
-->
</script>
handle: 20.500.12079/52669
Abstract Sorption-Enhanced Steam Methane Reforming (SE-SMR) is a promising technology for effective production of hydrogen with simultaneous CO2 capture from conventional fuels (e.g. methane, coal) and alternative fuels (e.g. biomass). SE-SMR combines steam methane reforming reaction and water-gas shift conversion reaction with a high temperature CO2 sorption system using a mixture of solid catalyst and sorbent. In this work, a methodology that combines Taguchi robust Design of Experiments (DoE) with previously validated CFD simulations [ 19 ] is presented. The main objective is to carry on a multi-criteria analysis of the effect of different sorbents and pretreatments and operation parameters in the response of the 500 kWth bubbling fluidized bed (BFB) reactor installed in the ZECOMIX (Zero Emissions of CarbOn with MIXed technologies) research infrastructure of ENEA. The effect of different sorbents (i.e. naturally occurring dolomite and synthetic CaO-Ca12Al14O33) and pretreatment seems to be negligible at high scales compared with heat and mass transfer mechanisms. Other parameters (i.e. temperature, pressure, particle diameter, gas velocity, bed height, presence of catalyst and sorbent, treatment of sorbent, syngas composition) have been also evaluated. The present methodology can be a useful approach for a preliminary design and optimization of a full-scale SE-SMR reactors.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.01.003&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 35 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.01.003&type=result"></script>');
-->
</script>
Globally, the growing production of food commodities generates significant quantities of agroindustrial residues, most of which are untreated and disposed of as waste through either burning, dumping into the land, or unplanned landfilling, thereby causing environmental pollution, public health problems, and decreased soil organic matter and soil productivity. A literature review has been conducted on the current crop residue biomass valorization, analyzing raw material properties and the potential risks associated with its incorrect or absent management, as well as the major microbial fermentation strategies that are used for converting residual crops into valuable products. Approximately 2445.2 million tons of crop residues are produced worldwide. Microbial fermentation is an efficient way of managing residues that are rich in nutrients (e.g., nitrogen, phosphorus, and potassium) and converting them into single-cell proteins, antibiotics, enzymes, bioalcohols, polysaccharides, fine chemicals, and others, thereby supporting a circular bioeconomy. Although separate saccharification and fermentation (SHF) represent the predominant fermentation strategy, it requires considerable equipment costs and a long process time, which can lead to the formation of contaminations and inhibitors. Alternative conversion strategies, including simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP), can reduce time and production costs, contaminations, and inhibitor formation, and enhance process yields. Nevertheless, combining hydrolysis and fermentation into a single phase results in non-optimal temperature and pH. This review discusses crop residue valorization through fermentation strategies, and provides a 360-degree view of the topic. After investigating the major types of crop residues and the potential environmental risks associated with their incorrect or absent management, it analyzes the key steps in the crop residue bioconversion process, and the most common microorganisms and microbial cultures. In addition, this review reports on various examples of crop residues being converted into industrial products and analyzes the main fermentation strategies (SHF, SSF, SSCF, and CBP), highlighting their strengths and weaknesses. As a matter of fact, fermentation strategies need to be compared for their benefits and disadvantages before being implemented on a large scale. In addition, the properties and availability of the raw materials, investment, and operating costs, the skilled workforce availability, sustainability, and the return on investment all need to be evaluated. Finally, the discussion focus on future outlooks and challenges.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31083/j.fbe1503017&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31083/j.fbe1503017&type=result"></script>');
-->
</script>
handle: 20.500.12079/268
The processes occurring in the marine environment at the interface between sea and glaciers in Arctic fiords are often poorly investigated, mainly due to logistical reasons. Two multidisciplinary campaigns have been carried out in September 2000 and 2001 in the inner part of Kongsfiord to collect late-summer data on oceanographic processes at the peculiar environment close to glaciers front. Warmer oceanic waters enter the inner Kongsfiord across the southern passage of the moraine 20-25 m deep. Surface waters get colder and fresher flowing northward along the glaciers' front and exit across the recently opened passage of Bl¯mstrand. The water column is well stratified with cold lenses of freshwater outflowing from the glaciers at the surface. Sedimentation sharply decreases with distance from the glaciers' front. The inter-moraine depression is the area where preferential sediment accumulation occurs (up to 1.8g cm-2 yr-1), with a residence time of particles in the water column at around 5 days.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::4bdd49d79da960d82d7e2e85a9072db4&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::4bdd49d79da960d82d7e2e85a9072db4&type=result"></script>');
-->
</script>
Protein mussel-inspired adhesive polymers, characterized by the presence of catechol groups, possess superior muco-adhesive properties and have great potentiality in wound healing. Suitable materials for wound dressing should properly combine muco-adhesiveness and antimicrobial activity. In this work, catechol-functionalized chitosan was obtained by reaction with hydrocaffeic acid (HCAF), in order to investigate how catechol introduction at different content could affect the intrinsic antimicrobial activity of the polymer itself. Unexpectedly, an enhancement of chitosan antimicrobial activity was observed after catechol functionalization, with a fourfold reduction in the polymer minimum inhibitory concentration versus Staphylococcus epidermidis. Additionally, a commercial wound dressing coated with one of the synthesized CS-HCAF derivatives showed a significant reduction in the adhesion of S. epidermidis compared to the uncoated dressing (3-log reduction). The CS-HCAF derivatives also showed an interesting antioxidant property (EC
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2017.09.073&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 82 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbpol.2017.09.073&type=result"></script>');
-->
</script>
doi: 10.1002/asl2.430
handle: 20.500.12079/1083
AbstractTwelve coupled model simulations of two multi‐model ensemble (MME) systems for boreal winters from 1983 to 2005 are used to improve the climate prediction. From grading the relative capability of each simulation in reproducing the observed link between the tropical El Niño‐Southern Oscillation (ENSO)‐related Walker circulation and the Pacific rainfall, we find an optimal MME suite with improved prediction skills. This study demonstrates that the climate filter concept, proposed by us in a recent work, is not only useful in improving the MME prediction skills as compared to a single MME system, but also the skills of a grand MME that encompasses two well‐performing MMEs.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/asl2.430&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 9 | |
popularity | Average | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/asl2.430&type=result"></script>');
-->
</script>
handle: 20.500.12079/3006
The European Community is committed to the development of a DEMOnstration fusion power plant whose operation could start as soon as 2050. The blanket is one of the most critical components in a fusion reactor; three of the four blanket concepts currently under development are based on the use of the liquid eutectic alloy Pb-15.7Li. Since the blanket will operate under the strong magnetic field used to confine the plasma, electromagnetic forces will occur in the PbLi flow giving rise to magnetohydrodynamic (MHD) phenomena.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::60f21f2431cb75666969d5d3ce8ac088&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::60f21f2431cb75666969d5d3ce8ac088&type=result"></script>');
-->
</script>
handle: 20.500.12079/1660
Efficiency and competitiveness in textile and clothing manufacturing sector must take into account the current and future energy challenges. Energy efficiency is a subject of critical importance for the Textile & Clothing industry, for other sectors and for the society in general. EURATEX has initiated Energy Made-to-Measure, an information campaign running between 2014-2016 to empower over 300 textile & clothing companies, notably SMEs, to become more energy efficient. SET (Save Energy in Textile SMEs), a collaborative project co-funded within the European Programme Intelligent Energy Europe II helps companies to understand their energy consumption and allows them to compare the sector benchmarks in different production processes. SET has developed the SET Scheme, Energy Saving and Efficiency Tool, a free of charge tool customized for textile manufacturers. The SET Scheme is made up of 4 elements: a stand-alone software (SET Tool) for self-assessment based on an Excel application; an on-line part (SET WEB) for advanced benchmarking and comparison of the performances across years; a guiding document for the companies and overview of financial incentives and legal obligations regarding energy efficiency. Designed specifically for small and medium enterprises (SMEs), the SET Scheme enables the evaluation of energy consumption and recommends measures to reduce the consumption. Prior to modifying the company's production processes and making investments to increase energy efficiency, textile SMEs need to get different type of information, including legal context, economic and technical peculiarities.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::87e8fda96a985baa2842ee30834a165a&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::87e8fda96a985baa2842ee30834a165a&type=result"></script>');
-->
</script>
handle: 20.500.12079/72707 , 11590/436292
A comparative study of the directive radiation obtained from two kinds of 2-D photonic crystal structures excited by an electric source is presented in this letter. These structures consist of a stack of periodic chains of dielectric cylinders in free space or of circular voids in dielectric media. On the basis of an in-depth description of the physical phenomena underlying the Bloch transverse-electric modal field configurations of such structures, a set of design rules to achieve highly directive leaky-wave radiation is obtained. An analysis of the two types of structures shows that it is preferable to consider holey lattices to achieve more directive radiation, obtained by the excitation of a weakly attenuated fundamental leaky mode. Indeed, radiators consisting of an integer number of periodic chains of voids drilled in a dielectric medium over a metal plate show directivity at broadside approximately 6 dB higher than in the dielectric cylinder case. This class of holey lattices can be used to design highly directive leaky-wave antennas, with significant advantages of easy manufacturing, design simplicity, and low complexity.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lawp.2022.3226004&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lawp.2022.3226004&type=result"></script>');
-->
</script>
handle: 20.500.12079/885
Thanks to the "Duplicazione e Rinascita" (Duplication and Rebirth) Project,funded by the Ministry of Foreign Affairs and aimed at supporting the Baghdad Museum, since the beginning of the year 2000 studies have begun in ENEA, with the purpose of protecting material goods and the great deal of knowledge of the ancient civilizations flourished in the ancient Mesopotamia,now Iraq. Although the studies, projects and activities carried out share the use of data processing in the broadest sense, they focus on three different lines of research, which have faced and are still facing the problem of preservation of ancient artifacts or – equally important – maintenance and dissemination of ancient knowledge from different standpoints. The three technologies at issue are, respectively: the Reverse Engineering and Rapid Prototyping; the integration of Language Technologies (Multilingual Text Mining) and GRID Technologies in the ENEA-GRID infrastructure, for the analysis of ancient texts in Assyriology; the use of ICT technologies for the collection, use and dissemination of cultural resources
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::9992f9e4bc150223d3718d16c47aa49d&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::9992f9e4bc150223d3718d16c47aa49d&type=result"></script>');
-->
</script>
handle: 20.500.12079/7864
The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the sub-channels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with sub-channel Reynolds number in the range Resc=10^3-10^4 and heat flux in the range q''=50-500[kW/m2]. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt numbers were also calculated with two different definitions. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for rod bundles. Local Nusselt numbers in peripheral ranks are lower, due to the presence of the hexagonal external wrap which affects the temperature profile.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::c7c5d2158d0e99914162310d25924d66&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2640::c7c5d2158d0e99914162310d25924d66&type=result"></script>');
-->
</script>
handle: 20.500.12079/52669
Abstract Sorption-Enhanced Steam Methane Reforming (SE-SMR) is a promising technology for effective production of hydrogen with simultaneous CO2 capture from conventional fuels (e.g. methane, coal) and alternative fuels (e.g. biomass). SE-SMR combines steam methane reforming reaction and water-gas shift conversion reaction with a high temperature CO2 sorption system using a mixture of solid catalyst and sorbent. In this work, a methodology that combines Taguchi robust Design of Experiments (DoE) with previously validated CFD simulations [ 19 ] is presented. The main objective is to carry on a multi-criteria analysis of the effect of different sorbents and pretreatments and operation parameters in the response of the 500 kWth bubbling fluidized bed (BFB) reactor installed in the ZECOMIX (Zero Emissions of CarbOn with MIXed technologies) research infrastructure of ENEA. The effect of different sorbents (i.e. naturally occurring dolomite and synthetic CaO-Ca12Al14O33) and pretreatment seems to be negligible at high scales compared with heat and mass transfer mechanisms. Other parameters (i.e. temperature, pressure, particle diameter, gas velocity, bed height, presence of catalyst and sorbent, treatment of sorbent, syngas composition) have been also evaluated. The present methodology can be a useful approach for a preliminary design and optimization of a full-scale SE-SMR reactors.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.01.003&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 35 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.01.003&type=result"></script>');
-->
</script>
Globally, the growing production of food commodities generates significant quantities of agroindustrial residues, most of which are untreated and disposed of as waste through either burning, dumping into the land, or unplanned landfilling, thereby causing environmental pollution, public health problems, and decreased soil organic matter and soil productivity. A literature review has been conducted on the current crop residue biomass valorization, analyzing raw material properties and the potential risks associated with its incorrect or absent management, as well as the major microbial fermentation strategies that are used for converting residual crops into valuable products. Approximately 2445.2 million tons of crop residues are produced worldwide. Microbial fermentation is an efficient way of managing residues that are rich in nutrients (e.g., nitrogen, phosphorus, and potassium) and converting them into single-cell proteins, antibiotics, enzymes, bioalcohols, polysaccharides, fine chemicals, and others, thereby supporting a circular bioeconomy. Although separate saccharification and fermentation (SHF) represent the predominant fermentation strategy, it requires considerable equipment costs and a long process time, which can lead to the formation of contaminations and inhibitors. Alternative conversion strategies, including simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP), can reduce time and production costs, contaminations, and inhibitor formation, and enhance process yields. Nevertheless, combining hydrolysis and fermentation into a single phase results in non-optimal temperature and pH. This review discusses crop residue valorization through fermentation strategies, and provides a 360-degree view of the topic. After investigating the major types of crop residues and the potential environmental risks associated with their incorrect or absent management, it analyzes the key steps in the crop residue bioconversion process, and the most common microorganisms and microbial cultures. In addition, this review reports on various examples of crop residues being converted into industrial products and analyzes the main fermentation strategies (SHF, SSF, SSCF, and CBP), highlighting their strengths and weaknesses. As a matter of fact, fermentation strategies need to be compared for their benefits and disadvantages before being implemented on a large scale. In addition, the properties and availability of the raw materials, investment, and operating costs, the skilled workforce availability, sustainability, and the return on investment all need to be evaluated. Finally, the discussion focus on future outlooks and challenges.