pmid: 34714662
pmc: PMC8630795
A detailed TDDFT study (with all-electron STO-TZ2P basis sets and the COSMO solvation model) has been carried out on the effect of diprotonation on the UV-vis-NIR spectra of free-base tetraphenylporphyrin and tetrakis(
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC8630795&type=result"></script>');
-->
</script>
bronze |
citations | 13 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC8630795&type=result"></script>');
-->
</script>
handle: 10261/179003
This dataset compiles SEM images, modelled isopach map and topographic profiles, and data of radiocarbon ages, parameters of Tephra2 and AshCalc codes of Holocene volcanic ashes of of Southern Puna and neighbouring areas (NW Argentina). SEM images detail differences among the Bolsón de Fiambalá, Cerro Blanco and Cueros de Purulla fallout ash deposits. Tephra2 code was used to simulate the ash fallout, and the AshCalc code to compare different methods for ash volume estimates associated with the 4.2 ka cal BP eruption of the Cerro Blanco Volcanic Complex. Topographic profiles are used to explain the secondary thickening of fallout ash deposits. Material suplementario (Figuras S1-S4 y Tablas S1-S4 del artículo Fernandez-Turiel, J.-L.; Perez-Torrado, F. J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Carracedo, J. C., Rejas, M.; Lobo, A.; Osterrieth, M.; Carrizo, J. I.; Esteban, G.; Gallardo, J.; Ratto, N. (2019). The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions. Estudios Geológicos 75(1): e088. https://doi.org/10.3989/egeol.43438.515 MINECO, CGL2011-23307, Proyecto QUECA Peer reviewed
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8629&type=result"></script>');
-->
</script>
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8629&type=result"></script>');
-->
</script>
Background This data is camera images and nozzle pressure gauge voltage traces from rapid decompression shots at the LMU shock tube facility. This data is discussed in the "Materials and Methods" section of the paper "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows". Electric sparks and explosive flows have long been associated with each other. Flowing dust particles originate charge through contact and separate based on inertia, resulting in strong electric fields supporting sparks. These sparks can cause explosions in dusty environments, especially those rich in carbon, such as coal mines and grain elevators. Recent observations of explosive events in nature and decompression experiments indicate that supersonic flows of explosions may alter the electrical discharge process. Shocks may suppress parts of the hierarchy of the discharge phenomena, such as leaders. In our decompression experiments, a shock tube ejects a flow of gas and particles into an expansion chamber. We imaged an illuminated plume from the decompression of a mixture of argon and <100 mg of diamond particles and observe sparks occurring below the sharp boundary of a condensation cloud. We also performed hydrodynamics simulations of the decompression event that provide insight into the conditions supporting the observed behavior. Simulation results agree closely with the experimentally observed Mach disk shock shape and height. This represents direct evidence that the sparks are sculpted by the outflow. The spatial and temporal scale of the sparks transmit an impression of the shock tube flow, a connection that could enable novel instrumentation to diagnose currently inaccessible supersonic granular phenomena. Accessing Data The prefixes of the filenames correspond to the shot dates and times listed in table S1 of the paper. The "_camera.zip" files contains tiff images of the camera frames. The ".ixc" file in each zip lists camera settings in plain text. The ".dat" file contains the voltage measurement of the nozzle pressure gauge. Row 1 is the header, row 2 is the time in seconds, and row 3 is the voltage of the pressure gauge in Volts. The peak pressure in the header can be used to relate the voltage to pressure. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with support from the Site-Directed Research and Development program, DOE/NV/03624--0956, and in part by the European Plate Observing Systems Transnational Access program of the European Community HORIZON 2020 research and innovation program under grant N 676564. CC acknowledges the support from the DFG grant CI 25/2-1 and from the European Community HORIZON 2020 research and innovation programme under the Marie Sklodowska Curie grant nr. 705619. LLNL-MI-817289. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific com- mercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. {"references": ["C. Cimarelli, M. Alatorre-Ibargengoitia, U. Kueppers, B. Scheu, D. Dingwell, Experimen- tal generation of volcanic lightning. Geology 42, 79\u201382 (2014)"]}
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
handle: 20.500.11850/229160
EPOS – the European Plate Observing System – is the ESFRI infrastructure serving the need of the solid Earth science community at large. The EPOS mission is to create a single sustainable, and distributed infrastructure that integrates the diverse European Research Infrastructures for solid Earth science under a common framework. Thematic Core Services (TCS) and Integrated Core Services (Central Hub, ICS-C and Distributed, ICS-D) are key elements, together with NRIs (National Research Infrastructures), in the EPOS architecture. Following the preparatory phase, EPOS has initiated formal steps to adopt an ERIC legal framework (European Research Infrastructure Consortium). The statutory seat of EPOS will be in Rome, Italy, while the ICS-C will be jointly operated by France, UK and Denmark. The TCS planned so far cover: seismology, near-fault observatories, GNSS data and products, volcano observations, satellite data, geomagnetic observations, anthropogenic hazards, geological information modelling, multiscale laboratories and geo-energy test beds for low carbon energy. In the ERIC process, EPOS and all its services must achieve sustainability from a legal, governance, financial, and technical point of view, as well as full harmonization with national infrastructure roadmaps. As EPOS is a distributed infrastructure, the TCSs have to be linked to the future EPOS ERIC from legal and governance perspectives. For this purpose the TCSs have started to organize themselves as consortia and negotiate agreements to define the roles of the different actors in the consortium as well as their commitment to contribute to the EPOS activities. The link to the EPOS ERIC shall be made by service agreements of dedicated Service Providers. A common EPOS data policy has also been developed, based on the general principles of Open Access and paying careful attention to licensing issues, quality control, and intellectual property rights, which shall apply to the data, data products, software and services (DDSS) accessible through EPOS. From a financial standpoint, EPOS elaborated common guidelines for all institutions providing services, and selected a costing model and funding approach which foresees a mixed support of the services via national contributions and ERIC membership fees. In the EPOS multi-disciplinary environment, harmonization and integration are required at different levels and with a variety of different stakeholders; to this purpose, a Service Coordination Board (SCB) and technical Harmonization Groups (HGs) were established to develop the EPOS metadata standards with the EPOS Integrated Central Services, and to harmonize data and product standards with other projects at European and international level, including e.g. ENVRI+, EUDAT and EarthCube (US). Geophysical Research Abstracts, 19 ISSN:1607-7962 ISSN:1029-7006
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000229160&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000229160&type=result"></script>');
-->
</script>
handle: 2445/196004 , 10803/687988
[spa] El Sistema Tierra está formado por cuatro componentes que sustentan la vida: la atmósfera, la biosfera, la hidrosfera y la geosfera. La compleja región en la que interactúan estos elementos es conocida como la ‘Zona Crítica’. La zona crítica (CZ) es crucial para nuestra sociedad, ya que alberga una amplia gama de procesos hidrológicos, geoquímicos y biológicos que operan a numerosas escalas y dan forma a los paisajes, sustentan los ecosistemas y controlan la disponibilidad de recursos. La CZ y por extensión el subsuelo poco profundo albergan la actividad y las infraestructuras socialmente útiles, por lo que son vulnerables a los riesgos naturales, como los fenómenos meteorológicos extremos, la actividad volcánica o los terremotos. Por ello, es fundamental investigar y monitorizar la CZ, para comprender su geometría, extensión y propiedades físicas con el fin de elaborar evaluaciones completas de los peligros que podrían producirse en relación con esta zona tan importante. El sureste de la Península Ibérica se caracteriza por una moderada pero intensa actividad sísmica que ha causado importantes daños desde tiempos históricos. La sismicidad en esa zona se distribuye a lo largo de una banda de deformación relativamente amplia, paralela a la costa, formada por un sistema de fallas con deslizamientos bien desarrollados, conocida como Zona de Cizalla Bética Oriental (ZCBO). La ZCBO, que discurre a lo largo del límite sur de la Depresión del Guadalentín, es una zona densamente poblada y con una gran actividad agrícola. Por lo tanto, la actividad de las fallas en la ZCBO representa un peligro sísmico con un impacto social y económico potencialmente muy significativo. Esta memoria se centra en la caracterización de la estructura y características-naturaleza del subsuelo somero de los sistemas de fallas/fracturas de Carrascoy y Alhama de Murcia, en el SE de la Península Ibérica. Para lograr esta caracterización, se construyeron diferentes modelos de velocidad-profundidad de ondas de cizalla basados en el Análisis Multicanal de Ondas Superficiales (MASW siglas en inglés). Se construyeron también modelos de ondas P, y de resistividad mediante métodos de tomografía de ondas P y/o Tomografía de Resistividad Eléctrica (ERT). También se incorporaron estudios de geología de superficie (por ejemplo, cartografía geológica y estudio de paleosismicidad, trincheras) para proporcionar modelos de propiedades físicas del subsuelo. Las velocidades de las ondas S se estimaron a partir de las ondas superficiales registradas en datos de sísmica de reflexión de incidencia vertical convencional (fuente controlada). La velocidad de las ondas P se determinó a partir de la tomografía de tiempos de viaje de las primeras llegadas de los mismos registros. Los modelos resultantes contribuyeron a determinar los siguientes puntos: i) la identificación de zonas de fallas poco profundas, incluidas una serie de fallas ciegas desconocidas hasta el momento; ii) el grosor de la zona crítica y su relación con las zonas de fallas en las áreas de estudio; y iii) proporcionar información valiosa sobre la red de fallas para las evaluaciones de riesgo sísmico. La firma sísmica de las zonas de falla, incluidas las de las múltiples fallas ciegas y las zonas fracturadas identificadas en los diferentes perfiles, quedó bien reflejada en los modelos de velocidad en función de la profundidad 2D (ondas -S y -P). Las zonas de fractura incluidas las fallas ciegas se caracterizan por reflejar anomalías de velocidad relativamente baja en el orden de Vs 500-1000 m/s y Vp 1300-1700 m/s, esto refleja una reducción de los módulos bulk y de cizalla en el entorno y a lo largo del plano de falla. Los perfiles de Carrascoy y La Torrecilla presentan mayores concentraciones de zonas de fractura (falla) que los perfiles de La Salud Sur y La Salud Norte. Esta disminución posiblemente indica zona de fallas menos maduras. La zona crítica (CZ) se caracteriza, en general, por presentar anomalías de bajas velocidades sísmicas Vs < 600 m/s y Vp < 1300 m/s, lo cual se congelaciona con la capa de baja resistividad esperada en los sedimentos aluviales poco consolidados del Cuaternario en los perfiles de La Torrecilla, La Salud Norte y La Salud Sur, así como la Unidad Roja y el aluvial Pleistoceno- Cuaternario en el perfil de Carrascoy. El espesor de la CZ en el perfil de La Salud Norte oscila entre los 35-45 m y en el perfil de La Salud Sur entre los 40-47,5 m. Además, la capa de CZ más gruesa aparece en el perfil de La Torrecilla con un espesor de unos 40-50 m y la CZ más fina se encuentra en el perfil de Carrascoy con un espesor de unos 30-40 m. Los modelos también revelan la relación de las zonas de fallas, zonas más fracturadas con el espesor de la CZ. La presencia de fallas puede contribuir a la topografía observada de la CZ de dos maneras: cambios en la elevación del basamento rocoso como consecuencia de los cambios en la geometría de las fallas y/o un aumento en el número de fragmentos de la capa de regolito, siendo la capa de la CZ cerca de la zona de falla relativamente más gruesa que en lugares alejados de la zona de falla. La caracterización de las ondas de cizalla del subsuelo que se presenta en este trabajo proporciona un protocolo metodológico y de retroalimentación para estudiar la CZ y por extensión el subsuelo más somero en el entorno de redes de fracturación, y fallas, proporcionando información sobre su geometría y extensión en profundidad reduciendo la incertidumbre de los modelos geológicos previos basados en trincheras paleosismológicas, y, por tanto, éstos pueden utilizarse para mejorar la evaluación de la peligrosidad sísmica y el estudio de las zonas críticas (CZ) de ésta y otras regiones tectónicamente activas. [eng] The Earth System is formed by four components that sustain life: the atmosphere, the biosphere, the hydrosphere and the geosphere. The complex region in which these elements interact is known as the ‘Critical Zone’. The critical zone (CZ) is crucial for our society, as it is host of a diverse range of hydrological, geochemical, and biological processes that operate on numerous scales and shape landscapes, support ecosystems, and control resource availability. The CZ and by extension the shallow subsurface is also the host to human activity and infrastructure, and it is therefore vulnerable to natural hazards, such as extreme weather events, volcanic activity or earthquakes. Thus, it is key to investigate and monitor the shallow subsurface, to understand its geometry, extent and physical properties in order to produce comprehensive hazard assessments that could take place in connection to this important layer. The southeastern part of the Iberian Peninsula is characterized by moderate but intense earthquake activity that has caused significant damage since historical times. The seismicity in that area is distributed within a relatively broad deformation band parallel to the coast that includes a well-developed strike-slip fracture system. This deformation band is known as the Eastern Betic Shear Zone (EBSZ) and, runs along the southern border of the Guadalentín Depression, it is a densely populated area with extensive agricultural activity. Therefore, the activity of the faults in the EBSZ represents a seismic hazard with a very significant social and economic impact potential. This memoir focuses in the characterization of the shallow sub-surface structure including the CZ and, characteristics of the Carrascoy and Alhama de Murcia fault systems, SE Iberian Peninsula. To achieve this characterization, different shear wave seismic velocity-depth models based on Multichannel Analysis of Surface Waves (MASW) were constructed. These models were complemented with investigations involving P-wave tomography and/or Electrical Resistivity Tomography (ERT) methods, as well as surface geological observations (e.g. mapping and paleoseismological trench studies) to constrain physical properties models of the subsurface. S-wave velocities were estimated from the surface waves recorded within the controlled-source shot records of conventional normal incidence seismic reflection data. P-wave velocity models were determined from first arrival travel-time tomography. The resulting velocity-depth models revealed: i) the location, geometry and extent of shallow fault zones, and their associated damaged unconsolidated zones, new blind faults were also identified; ii) the thickness of the critical zone and its relation with fault zones in the target areas; and, iii) provide valuable information about the fault network for seismic hazard assessments. The seismic signature of the fault zones, including these of the multiple blind faults and fractured zones identified in the different profiles, was well demonstrated using 2D velocity depth models (S- and P- waves). Seismic signatures of fault zones and blind faults are indicated in the models by low-velocity anomalies. Vs velocities in the range of 500-1000 m/s and Vp within the range of 1300-1700 m/s. These low values indicate a reduced bulk- and shear-modulus along and around the fault plane. The velocity model images across the Carrascoy and La Torrecilla reveal higher number of faults than what is imaged in the La Salud South and La Salud North profiles. This might be indicative of differences in the maturity degree of the fracture zones involved. Being the former more mature than the latter. The models obtained have resolved the geometry and characteristics of the CZ in the neighborhood of faults/fracture zones. It is characterized consistently by relatively low seismic velocities Vs < 600 m/s and Vp < 1300 m/s, which is consistent with the expected low resistivity layer of Quaternary alluvial unconsolidated sediments in the La Torrecilla, La Salud North, and La Salud South profiles, as well as the Unidad Roja (Red Unit) and the Pleistocene-Quaternary alluvial in the Carrascoy profile. The thickness of the CZ in La Salud North profile lies within the range from 35-45 m and in La Salud South profile within 40-47.5 m. Furthermore, the thickest CZ layer constrained in the La Torrecilla profile features a thickness of ca. 40-50 m. The thinnest CZ is located in the Carrascoy profile with a thickness of ca. 30-40 m. In addition, the results also reveal a relation between fracture/fault zones and the thickness of the CZ. The presence of faults can contribute to the observed topography of the CZ in two ways: changes in bedrock elevation as a consequence of fault geometry changes and/or an increase in the number of regolith layer fragments, with the CZ layer near the fault zone becoming relatively thicker than in places far away from the fault zone. The shear wave characterization of the sub-surface presented in this memoir provides a methodological and workflow protocol to study the shallow subsurface in areas with active deformation, providing geometry and depth constraints to the structures interpreted in the geological models based on paleoseismological trenches, and, therefore, these can be used for improving the seismic hazard assessment and provide a detailed characterization of the CZ of this and other tectonically active regions in the world. [cat] El sistema Terra està format per quatre components que sustenten la vida: l'atmosfera, la biosfera, la hidrosfera i la geosfera. La complexa regió on interactuen aquests elements es coneguda com la ‘Zona Crítica’. La zona crítica (CZ) és crucial per a la nostra societat, ja que acull una àmplia gamma de processos hidrològics, geoquímics i biològics que operen a nombroses escales i donen forma als paisatges, sustenten els ecosistemes i controlen la disponibilitat de recursos. La CZ també és la seu de l'activitat humana i de les infraestructures, per la qual cosa és vulnerable als riscos naturals, com els fenòmens meteorològics extrems, l'activitat volcànica o els terratrèmols. Per això, és fonamental investigar i monitoritzar aquesta capa per comprendre'n la geometria, l'extensió i les propietats físiques per tal d'elaborar avaluacions completes dels perills que podrien produir-se en relació amb aquesta zona tan important. El sud-est de la Península Ibèrica es caracteritza per una moderada però intensa activitat sísmica que ha causat danys importants des de temps històrics. La sismicitat en aquesta zona es distribueix al llarg d'una banda de deformació relativament àmplia, paral·lela a la costa, formada per un sistema de falles amb lliscaments ben desenvolupats, coneguda com la Zona de Cisalla Bètica Oriental (ZCBO). L'ZCBO, que discorre al llarg del límit sud de la Depressió del Guadalentí, és una zona densament poblada i amb una gran activitat agrícola. Per tant, l’activitat de les falles a l’ZCBO representa un perill sísmic amb un impacte social i econòmic potencial molt significatiu. Aquesta memòria es centra en la caracterització de l'estructura i les característiques del subsòl pròxim a la superfície dels sistemes de falles de Carrascoy i Alhama de Múrcia, al SE de la Península Ibèrica. Per aconseguir aquesta caracterització, es van construir diferents models de velocitat-profunditat d'ones de cisalla basats en l'anàlisi multicanal d'ones superficials (MASW). Aquests models també es van combinar amb mètodes de tomografia d'ones P i/o Tomografia de Resistivitat Elèctrica (ERT), així com amb estudis de superfície (per exemple, cartografia geològica i estudi de trinxeres paleosismològiques) com a control, per proporcionar models millorats del subsòl. Les velocitats de les ones S es van estimar a partir de les ones superficials registrades en les dades sísmiques de reflexió convencionals (font controlada) i la velocitat de les ones P es va determinar a partir de la tomografia de temps de viatge de primeres arribades. El model de velocitat-profunditat resultant va ajudar a determinar els següents punts: i) la identificació de zones de falles poc profundes, incloent una sèrie de falles cegues desconegudes fins al moment; ii) el gruix de la zona crítica i la seva relació amb les zones de falles a les àrees d’estudi; i iii) proporcionar informació valuosa sobre la xarxa de falles per a les avaluacions de risc sísmic. La signatura sísmica de les zones de falla, incloses les de les múltiples falles cegues i les zones fracturades identificades als diferents perfils, va quedar ben demostrada mitjançant models de velocitat en profunditat 2D (ones -S i -P). Les firmes sísmiques de les zones de falla i de les falles cegues es caracteritzen per contrastos de baixa velocitat de Vs 500-1000 m/s i Vp 1300-1700 m/s com a conseqüència de la reducció dels mòduls bulk i cisalla al llarg del plans de falla. Els perfils de Carrascoy i La Torrecilla presenten més concentracions de zones de falla que els perfils de La Salut Sud i La Salut Nord, indicant la possibilitat de tractar-se de falles menys madures. La zona crítica (CZ) es caracteritza per baixes velocitats sísmiques Vs < 600 m/s i Vp < 1300 m/s, la qual cosa és consistent amb la capa d'alta resistivitat esperada dels sediments al·luvials del Quaternari als perfils de La Torrecilla, La Salut Nord i La Salut Sud, així com la Unitat Roja i l'al·luvial Plistocè-Quaternari al perfil de Carrascoy. L'espessor de la CZ al perfil de La Salut Nord oscil·la entre els 35-45 m i al perfil de La Salut Sud entre els 40-47,5 m. A més, la capa de CZ més gruixuda es descobreix al perfil de La Torrecilla amb un gruix d'uns 40-50 m i la CZ més fina es troba al perfil de Carrascoy amb un gruix d'uns 30-40 m. A més, els resultats també demostren la relació de les zones de falles actives amb el gruix de la CZ. La presència de falles pot contribuir a la topografia observada de la CZ de dues maneres: canvis en l'elevació del basament rocós com a conseqüència dels canvis a la geometria de les falles i/o un augment en el nombre de fragments de la capa de regòlit, sent la capa de la CZ prop de la zona de falla relativament més gruixuda que en llocs allunyats de la zona de falla. La caracterització de les ones de cisalla del subsòl que es presenta en aquest treball proporciona un protocol metodològic i de retroalimentació per estudiar el subsòl suc de les falles actives, complementant els models geològics previs basats en trinxeres paleosismològiques, i, per tant, es poden utilitzar per millorar la avaluació de la perillositat sísmica i l’estudi de les zones crítiques (CZ) d’aquesta i altres regions tectònicament actives del món. Programa de Doctorat en Ciències de la Terra / Tesi realitzada a Geociencias Barcelona - GEO3BCN (CSIC)
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2445/196004&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2445/196004&type=result"></script>');
-->
</script>
The immense advances in computer power achieved in the last decades have had a significant impact in Earth science, providing valuable research outputs that allow the simulation of complex natural processes and systems, and generating improved forecasts. The development and implementation of innovative geoscientific software is currently evolving towards a sustainable and efficient development by integrating models of different aspects of the Earth system. This will set the foundation for a future digital twin of the Earth. The codification and update of this software require great effort from research groups and therefore, it needs to be preserved for its reuse by future generations of geoscientists. Here, we report on Geo-Soft-CoRe, a Geoscientific Software & Code Repository, hosted at the archive DIGITAL.CSIC. This is an open source, multidisciplinary and multiscale collection of software and code developed to analyze different aspects of the Earth system, encompassing tools to: 1) analyze climate variability; 2) assess hazards, and 3) characterize the structure and dynamics of the solid Earth. Due to the broad range of applications of these software packages, this collection is useful not only for basic research in Earth science, but also for applied research and educational purposes, reducing the gap between the geosciences and the society. By providing each software and code with a permanent identifier (DOI), we ensure its self-sustainability and accomplish the FAIR (Findable, Accessible, Interoperable and Reusable) principles. Therefore, we aim for a more transparent science, transferring knowledge in an easier way to the geoscience community, and encouraging an integrated use of computational infrastructure.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::0b34716dfe15c7d7ae5d8a0b567463c3&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::0b34716dfe15c7d7ae5d8a0b567463c3&type=result"></script>');
-->
</script>
Decades of photogrammetric records at Bezymianny, one of the most active volcanoes on Earth, allow unveiling morphological changes, eruption and intrusion dynamics, erosion, lava and tephra deposition processes. This data publication releases an almost 7-decade long record, retrieved from airborne, satellite, and UAV platforms. The Kamchatkan Institute of Volcanology and Seismology released archives of high-resolution aerial images acquired in 1967-2013. We complemented the aerial datasets with 2017 Pleiades tri-stereo satellite and UAV images. The images were processed using Erdas Imagine and Photomod software. Here we publish nine quality-controlled point clouds in LAS format referenced to the WGS84 (UTM zone 57N). By comparing the point clouds we were able to describe topographic changes and calculate volumetric differences, details of which were further analyzed in Shevchenko et al. (2020, https://doi.org/...). The ~5-decade-long photogrammetric record was achieved by 8 aerial and 1 satellite-UAV datasets. The 8 sets of near nadir aerial photographs acquired in 1967, 1968, 1976, 1977, 1982, 1994, 2006, and 2013 were taken with various photogrammetry cameras dedicated for topographic analysis, specifically the AFA 41-10 camera (1967, 1968, 1976, and 1977; focal length = 99.086 mm), the TAFA 10 camera (1982 and 1994; focal length = 99.120 mm), and the AFA TE-140 camera (2006 and 2013; focal length = 139.536 mm). These analog cameras have all an 18×18 cm frame size. The acquisition flight altitude above the mean surface of Bezymianny varied from 1,500-2,500 m above mean surface elevation, translating up to >5,000 m above sea level. For photogrammetric processing, we used 3-4 consecutive shots that provided a 60-70% forward overlap. The analog photo negatives were digitized by scanning with Epson Perfection V750 Pro scanner in a resolution of 2,400 pixels/inch (approx. pixel (px) size = 0.01 mm). The mean scale within a single photograph depends on the distance to the surface and corresponds on average to 1:10,000-1:20,000. Thus, each px in the scanned image represents about 10-20 cm resolution on the ground. The coordinates of 12 ground control points were derived from a Theo 010B theodolite dataset collected at geodetic benchmarks during a 1977 fieldwork. These benchmarks were established on the slopes of Bezymianny before the 1977 aerial survey and then captured with the AFA 41-10 aerial camera. The most recent was a satellite dataset acquired on 2017-09-09 by the PHR 1B sensor aboard the Pleiades satellite (AIRBUS Defence & Space) operated by the French space agency (CNES). The forward, nadir and backward camera configuration allows revisiting any point on earth and was tasked for the acquisition of Bezymianny to provide a 0.5 m resolution panchromatic imagery dataset. In order to improve the Pleiades data, we complemented them with UAV data collected on 2017-07-29 with DJI Mavic Pro during fieldwork at Bezymianny. This data publication includes a description of the data (in pdf format) and the nine processed and controlled three-dimensional point clouds (in LAS format). The point clouds can be easily interpolated and imported into most open and commercially available geographic information system (GIS) software. Further details on data and data handling are provided in Shevchenko et al. (2020).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/gfz.2.1.2020.002&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/gfz.2.1.2020.002&type=result"></script>');
-->
</script>
The Alto Tiberina Near Fault Observatory (TABOO) in the upper Tiber Valley (northern Appennines) is a INGV research infrastructure in the framework of the EPOS Project, devoted to the study of preparatory processes and deformation characteristics of the Alto Tiberina Fault (ATF), a 60 km long, low-angle normal fault active since the Quaternary. The TABOO seismic network, covering an area of 120 × 120 km, consists of 60 permanent surface and 250 m deep borehole stations equipped with 3-components, 0.5s to 120s velocimeters, and strong motion sensors. Continuous seismic recordings are transmitted in real-time to the INGV, where we set up an automatic procedure that produces high-resolution earthquakes catalogues (location, magnitudes, 1st motion polarities) in near-real-time. A sensitive event detection engine running on the continuous data stream is followed by advanced phase identification, arrival-time picking, and quality assessment algorithms (MPX). Pick weights are determined from a statistical analysis of a set of predictors designed to correctly apply an a-priori chosen weighting scheme. The MPX results are used to routinely update earthquakes catalogues based on a variety of (1D and 3D) velocity models and location techniques. We are also applying the DD-RT procedure which uses cross-correlation and double-difference methods in real-time to relocate events with high precision relative to a high-resolution background catalog. P- and S-onset and location information are used to automatically compute focal mechanisms, VP/VSvariations in space and time, and periodically update 3D VP and VP/VS tomographic models. We present results from four years of operation, during which this monitoring system analyzed over 1.2 million detections and recovered ~60,000 earthquakes at a detection threshold of ML 0.5. The high-resolution information is being used to study changes in seismicity patterns and fault and rock properties along the ATF in space and time, and to elaborate ground shaking scenarios adopting diverse slip distributions and rupture directivity models. Direct link to the AGU 2014 Fall Meeting Abstract Repository: https://agu.confex.com/agu/fm14/meetingapp.cgi/Paper/12333
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1222147&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1222147&type=result"></script>');
-->
</script>
We investigate the ground deformation and source geometry of the 2016 Amatrice earthquake (Central Italy) by exploiting ALOS2 and Sentinel-1 coseismic differential interferometric synthetic aperture radar (DInSAR) measurements. They reveal two NNW-SSE striking surface deformation lobes, which could be the effect of two distinct faults or the rupture propagation of a single fault. We examine both cases through a single and a double dislocation planar source. Subsequently, we extend our analysis by applying a 3-D finite elements approach jointly exploiting DInSAR measurements and an independent, structurally constrained, 3-D fault model. This model is based on a double fault system including the two northern Gorzano and Redentore-Vettoretto faults (NGF and RVF) which merge into a single WSW dipping fault surface at the hypocentral depth (8 km). The retrieved best fit coseismic surface deformation pattern well supports the exploited structural model. The maximum displacements occur at 5–7 km depth, reaching 90 cm on the RVF footwall and 80 cm on the NGF hanging wall. The von Mises stress field confirms the retrieved seismogenic scenario.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3061::cb110371fc06fc531753c68488478aa8&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3061::cb110371fc06fc531753c68488478aa8&type=result"></script>');
-->
</script>
A cycle of four webinars on Open Science and Open Access for earth and environmental sciences, with discipline-specific tools and practical resources. Course outline: Module 1: - Introduction and motivations - Open Science in Solid Earth Science Module 2: - Research Data Management - OS in solid Earth sciences: the EPOS research infrastructure experience Module 3: - FAIR principles and Open Data - Implementing FAIR. Considerations from the solid Earth domain Module 4: - The Data Management Plan - The adoption of Open Science Paradigm at INGV - Practical Tips Scientific committee: Maria Silvia Giamberini, IGG/CNR Gina Pavone, ISTI/CNR
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4570243&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4570243&type=result"></script>');
-->
</script>
pmid: 34714662
pmc: PMC8630795
A detailed TDDFT study (with all-electron STO-TZ2P basis sets and the COSMO solvation model) has been carried out on the effect of diprotonation on the UV-vis-NIR spectra of free-base tetraphenylporphyrin and tetrakis(
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC8630795&type=result"></script>');
-->
</script>
bronze |
citations | 13 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC8630795&type=result"></script>');
-->
</script>
handle: 10261/179003
This dataset compiles SEM images, modelled isopach map and topographic profiles, and data of radiocarbon ages, parameters of Tephra2 and AshCalc codes of Holocene volcanic ashes of of Southern Puna and neighbouring areas (NW Argentina). SEM images detail differences among the Bolsón de Fiambalá, Cerro Blanco and Cueros de Purulla fallout ash deposits. Tephra2 code was used to simulate the ash fallout, and the AshCalc code to compare different methods for ash volume estimates associated with the 4.2 ka cal BP eruption of the Cerro Blanco Volcanic Complex. Topographic profiles are used to explain the secondary thickening of fallout ash deposits. Material suplementario (Figuras S1-S4 y Tablas S1-S4 del artículo Fernandez-Turiel, J.-L.; Perez-Torrado, F. J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Carracedo, J. C., Rejas, M.; Lobo, A.; Osterrieth, M.; Carrizo, J. I.; Esteban, G.; Gallardo, J.; Ratto, N. (2019). The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions. Estudios Geológicos 75(1): e088. https://doi.org/10.3989/egeol.43438.515 MINECO, CGL2011-23307, Proyecto QUECA Peer reviewed
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8629&type=result"></script>');
-->
</script>
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/8629&type=result"></script>');
-->
</script>
Background This data is camera images and nozzle pressure gauge voltage traces from rapid decompression shots at the LMU shock tube facility. This data is discussed in the "Materials and Methods" section of the paper "Standing Shock Prevents Propagation of Sparks in Supersonic Explosive Flows". Electric sparks and explosive flows have long been associated with each other. Flowing dust particles originate charge through contact and separate based on inertia, resulting in strong electric fields supporting sparks. These sparks can cause explosions in dusty environments, especially those rich in carbon, such as coal mines and grain elevators. Recent observations of explosive events in nature and decompression experiments indicate that supersonic flows of explosions may alter the electrical discharge process. Shocks may suppress parts of the hierarchy of the discharge phenomena, such as leaders. In our decompression experiments, a shock tube ejects a flow of gas and particles into an expansion chamber. We imaged an illuminated plume from the decompression of a mixture of argon and <100 mg of diamond particles and observe sparks occurring below the sharp boundary of a condensation cloud. We also performed hydrodynamics simulations of the decompression event that provide insight into the conditions supporting the observed behavior. Simulation results agree closely with the experimentally observed Mach disk shock shape and height. This represents direct evidence that the sparks are sculpted by the outflow. The spatial and temporal scale of the sparks transmit an impression of the shock tube flow, a connection that could enable novel instrumentation to diagnose currently inaccessible supersonic granular phenomena. Accessing Data The prefixes of the filenames correspond to the shot dates and times listed in table S1 of the paper. The "_camera.zip" files contains tiff images of the camera frames. The ".ixc" file in each zip lists camera settings in plain text. The ".dat" file contains the voltage measurement of the nozzle pressure gauge. Row 1 is the header, row 2 is the time in seconds, and row 3 is the voltage of the pressure gauge in Volts. The peak pressure in the header can be used to relate the voltage to pressure. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Mission Support and Test Services, LLC, under Contract No. DE-NA0003624 with support from the Site-Directed Research and Development program, DOE/NV/03624--0956, and in part by the European Plate Observing Systems Transnational Access program of the European Community HORIZON 2020 research and innovation program under grant N 676564. CC acknowledges the support from the DFG grant CI 25/2-1 and from the European Community HORIZON 2020 research and innovation programme under the Marie Sklodowska Curie grant nr. 705619. LLNL-MI-817289. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, complete- ness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific com- mercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. {"references": ["C. Cimarelli, M. Alatorre-Ibargengoitia, U. Kueppers, B. Scheu, D. Dingwell, Experimen- tal generation of volcanic lightning. Geology 42, 79\u201382 (2014)"]}
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4245224&type=result"></script>');
-->
</script>
handle: 20.500.11850/229160
EPOS – the European Plate Observing System – is the ESFRI infrastructure serving the need of the solid Earth science community at large. The EPOS mission is to create a single sustainable, and distributed infrastructure that integrates the diverse European Research Infrastructures for solid Earth science under a common framework. Thematic Core Services (TCS) and Integrated Core Services (Central Hub, ICS-C and Distributed, ICS-D) are key elements, together with NRIs (National Research Infrastructures), in the EPOS architecture. Following the preparatory phase, EPOS has initiated formal steps to adopt an ERIC legal framework (European Research Infrastructure Consortium). The statutory seat of EPOS will be in Rome, Italy, while the ICS-C will be jointly operated by France, UK and Denmark. The TCS planned so far cover: seismology, near-fault observatories, GNSS data and products, volcano observations, satellite data, geomagnetic observations, anthropogenic hazards, geological information modelling, multiscale laboratories and geo-energy test beds for low carbon energy. In the ERIC process, EPOS and all its services must achieve sustainability from a legal, governance, financial, and technical point of view, as well as full harmonization with national infrastructure roadmaps. As EPOS is a distributed infrastructure, the TCSs have to be linked to the future EPOS ERIC from legal and governance perspectives. For this purpose the TCSs have started to organize themselves as consortia and negotiate agreements to define the roles of the different actors in the consortium as well as their commitment to contribute to the EPOS activities. The link to the EPOS ERIC shall be made by service agreements of dedicated Service Providers. A common EPOS data policy has also been developed, based on the general principles of Open Access and paying careful attention to licensing issues, quality control, and intellectual property rights, which shall apply to the data, data products, software and services (DDSS) accessible through EPOS. From a financial standpoint, EPOS elaborated common guidelines for all institutions providing services, and selected a costing model and funding approach which foresees a mixed support of the services via national contributions and ERIC membership fees. In the EPOS multi-disciplinary environment, harmonization and integration are required at different levels and with a variety of different stakeholders; to this purpose, a Service Coordination Board (SCB) and technical Harmonization Groups (HGs) were established to develop the EPOS metadata standards with the EPOS Integrated Central Services, and to harmonize data and product standards with other projects at European and international level, including e.g. ENVRI+, EUDAT and EarthCube (US). Geophysical Research Abstracts, 19 ISSN:1607-7962 ISSN:1029-7006
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000229160&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |