This project explores strategies to effectively address the challenges surrounding the ‘dissonant’ heritage of totalitarian regimes. The difficulties associated with this heritage rises from multiple factors, such as the characteristics of materials and objects involved, historical and cultural contexts, political influences, ethical considerations, religious aspects, and personal beliefs of individuals involved. These differences give rise to conflicts and obstacles in preserving and managing such heritage. The main point of disagreement is whether undesired and painful objects and sites should be demolished or if they are to be preserved, how they should be appropriately presented. Therefore, it is essential to adopt a balanced approach that respects diverse perspectives, fosters dialogue, and embraces adaptive strategies. This approach is crucial for ensuring the long-term viability and meaningful interpretation of our shared collective heritage. The case study chosen is Lithuania, a former part of the Soviet Union. Most built heritage from the Soviet era may not be traditionally seen as culturally significant, but it does bear witness to collective memory. The goal is to analyze and propose an adaptive reuse project for a partially abandoned building, the former Taxi Park in Vilnius. To address historical memory, the proposal suggests a programic shift from a Taxi Park to a Film Park. This approach showcases artifacts from the Lithuanian film industry and transforms the space into an archival institution that engages with history. The building is organized in a chronological framework, with different floors that create a cohesive narrative that honors the past, preserves the present, and allows for future engagement. By incorporating these elements, the space serves educational, cultural, and future-oriented purposes.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::67528019e2e310261bb4fc35bdcb13fb&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::67528019e2e310261bb4fc35bdcb13fb&type=result"></script>');
-->
</script>
Silvi-Cultural Encounters: The Swedish University of Agricultural Sciences and Higher Forestry Education in Ethiopia, 1986–2009The article discusses the Swedish University of Agricultural Sciences’ support to higher forestry education in Ethiopia, which took place between 1986 and 2009 in the context of Swedish-Ethiopian development cooperation. Against a growing historical interest in transnational encounters within the field of education, it analyses how Swedish forestry experts designed educational programs and taught in new environments. The concept of “silvi-culture” is introduced to signify that the tensions that arose within this aid effort related both to the technicalities of forestry education and to diverging academic and social cultures. The article is structured around three kinds of “silvi-cultural encounters” that describe the development of the project both chronologically and thematically. These encounters are used to demonstrate how the forest as a concrete, physical place was of central importance to the Swedish experts, as well as to show how they were guided by preconceptions developed within the framework of a Swedish silvi-culture that was only partially compatible with the conditions in Ethiopia.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36368/njedh.v4i1.86&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36368/njedh.v4i1.86&type=result"></script>');
-->
</script>
Earlier research on Cold War resource politics has not focused significantly on the interests of smaller, non-colonial industrialized states. This paper examines the iron mining company LAMCO in Liberia, dominated strategically and operationally by Swedish actors and interests, between the mid-1950s and the late 1980s. It argues that the creation of LAMCO must be understood in the context of the early Cold War and its international politics, and that the enterprise's subsequent development was characterized by a specific technopolitical dynamic resulting from the encounter between the Liberian government's development strategy and the Swedish investors' need to mitigate political risks both in Liberia and at home. The findings help clarify the conditions under which actors from an ostensibly non-aligned and non-colonial country could gain access to minerals in Africa. They also contribute to our understanding of iron mining in Liberian political history, showing how LAMCO developed in close association with particular developmental policies in Liberia that sought to promote national development while simultaneously increasing the power of the Liberian presidency. Though it initially served this purpose successfully, its operations also generated a string of unexpected outcomes that eventually made the company a serious problem for the Liberian government. QC 20190902
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.exis.2019.06.008&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.exis.2019.06.008&type=result"></script>');
-->
</script>
In customer support, there are often a lot of repeat questions, and questions that does not need novel answers. In a quest to increase the productivity in the question answering task within any business, there is an apparent room for automatic answering to take on some of the workload of customer support functions. We look at clustering corpora of older queries and texts as a method for identifying groups of semantically similar questions and texts that would allow a system to identify new queries that fit a specific cluster to receive a connected, automatic response. The approach compares the performance of K-means and density-based clustering algorithms on three different corpora using document embeddings encoded with BERT. We also discuss the digital transformation process, why companies are unsuccessful in their implementation as well as the possible room for a new more iterative model. I kundtjänst förekommer det ofta upprepningar av frågor samt sådana frågor som inte kräver unika svar. I syfte att öka produktiviteten i kundtjänst funktionens arbete att besvara dessa frågor undersöks metoder för att automatisera en del av arbetet. Vi undersöker olika metoder för klusteranalys, applicerat på existerande korpusar innehållande texter så väl som frågor. Klusteranalysen genomförs i syfte att identifiera dokument som är semantiskt lika, vilket i ett automatiskt system för frågebevarelse skulle kunna användas för att besvara en ny fråga med ett existerande svar. En jämförelse mellan hur K-means och densitetsbaserad metod presterar på tre olika korpusar vars dokumentrepresentationer genererats med BERT genomförs. Vidare diskuteras den digitala transformationsprocessen, varför företag misslyckas avseende implementation samt även möjligheterna för en ny mer iterativ modell.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::406dd4c59813a402128b69ac2bab7f92&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::406dd4c59813a402128b69ac2bab7f92&type=result"></script>');
-->
</script>
Text clustering is a problem where texts are partitioned into homogeneous clusters, such as partitioning them based on their sentiment value. Two techniques to address the problem are representation learning, in particular language representation models, and clustering algorithms. The state-ofthe-art language models are based on neural networks, in particular the Transformer architecture, and the models are used to transform a text into a point in a high dimensional vector space. The texts are then clustered using a clustering algorithm, and a recognized partitional clustering algorithm is k-Means. Its goal is to find centroids that represent the clusters (partitions) by minimizing a distance measure. Two influential parameters of k-Means are the number of clusters and the initial centroids. Multiple heuristics exist to decide how the parameters are selected. The heuristic of using domain knowledge is commonly used when it is available, e.g., the number of clusters is set to the number of dataset labels. This project further explores this idea. The main contribution of the thesis is an investigation of domain knowledge and representation learning as a heuristic in centroid initialization applied to k-Means. Initial centroids were obtained by applying a representation learning technique on the dataset labels. The project analyzed a Swedish dataset with views towards different aspects of Swedish immigration and a Swedish translated movie review dataset using six Swedish compatible language models and two versions of k-Means. Clustering evaluation was measured using eight metrics related to cohesion, separation, external entropy and accuracy. The results show the proposed heuristic made a positive impact on the metrics. By employing the proposed heuristic, six out of eight metrics were improved compared to the baseline. The improvements were observed using six language models and k-Means on two datasets. Additionally, the evaluation metrics indicated that the proposed heuristic has opportunities for future improvements. Textklustering är ett problem där texter partitioneras i homogena kluster, till exempel genom att gruppera dem baserat på dess sentimentala värde. Två tekniker för att undersöka problemet är representationsinlärning, i synnerhet språkrepresentationsmodeller, och klustringsalgoritmer. Moderna språkmodeller är baserade på neurala nätverk, framförallt på Transformer arkitekturen, och modellerna används för att omvandla texter till punkter i ett högdimensionellt vektorrum. Därefter klustras texterna med hjälp av en klusteringsalgoritm, och en erkänd partition klusteringalgorithm är kMeans. Målet med algoritmen är att finna centroider som representerar klustren (partitioner) genom att minimera ett avståndsmått. Två inflytelserika parametrar i k-Means är antalet kluster och initiala centroider. Många heuristiker existerar för att bestämma hur dessa parametrar skall väljas. En vanligt förekommande heuristik är att använda domänkunskap om det är tillgängligt, e.g., antalet kluster väljs som antalet datamängdsetiketter. Detta projekt genomför ytterligare utforskningar av idén. Avhandlingens huvudsakliga bidrag är en undersökning av att använda kunskaper om domänen för datamängden och representationsinlärning som heuristik för centroid initialisering applicerat på k-Means. Initiala centroider erhölls genom att applicera en representationsinlärningsteknik på datamängdsetiketter. Projektet analyserar en svensk datamängd med åsikter gentemot olika aspekter av svensk immigration och en svensk översatt datamängd om filmrecensioner med hjälp av sex svenskkompatibla språkmodeller och kMeans. Utvärdering av klustringen uppmättes med hjälp av åtta mätetal relaterade till sammanhållning, separation, entropi och ackuratess. Den föreslagna heuristiken hade en positiv effekt på mätetalen. Genom att använda den föreslagna heuristiken förbättrades sex av åtta mätetal jämfört med baslinjen. Förbättringarna observerades med användning av sex språkmodeller och k-Means på två datamängder. Evalueringsmätetalen indikerar också på att heuristiken har möjligheter till framtida förbättringar.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::e3734a7b45e599655dbd48b8f5a52ed1&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::e3734a7b45e599655dbd48b8f5a52ed1&type=result"></script>');
-->
</script>
För att den gröna omställningen i Sverige ska lyckas krävs att mer än 100 000 personer flyttar till Norrland de närmaste åren för att arbeta i de nya industrierna som etableras där och i snabbt växande samhällena. Vilka berättelser skulle kunna få människor att flytta dit, och vilka är det egentligen som ska höra dessa berättelser? Det här är en analys av berättelser om Norrland för de som knappt varit där, för de som är födda där, för de som kan tänka sig att flytta dit och för de som påverkar utan att vara på plats. Analysen innehåller ett antal handgripliga rekommendationer för hur man kan beskriva den norra landsändan på ett sätt som kan varieras beroende på vem som är mottagare men som likväl förenas av en berättelse om regionen som helhet. In order for the green transition in Sweden to succeed, more than 100 000 people to move to the northern part of the country in the coming years to work in the new industries being established there and in the rapidly growing communities. What are the stories that could attract people to move there, and who should hear these stories? This is an analysis of stories about Norrland for those who have barely been there, for those who were born there, for those who might consider moving there, and for those who influence without being there. The analysis provides a number of tangible recommendations on how to describe the North in a way that can be varied depending on the audience, but still united by a narrative of the region as a whole. Del av regeringsuppdrag Thriving North, “Stöd till innovationsarbete inom hållbar stads- och samhällsutveckling i Norrbotten och Västerbotten”QC 20240318 Stöd till innovationsarbete inom hållbar stads- och samhällsutveckling i Norrbotten och Västerbotten
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::fb8ae562b35b3484b9b3a2ef9c72366b&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::fb8ae562b35b3484b9b3a2ef9c72366b&type=result"></script>');
-->
</script>
Machine Learning models trained using supervised learning can achieve great results when a sufficient amount of labeled data is used. However, the annotation process is a costly and time-consuming task. There are many methods devised to make the annotation pipeline more user and data efficient. This thesis explores techniques from Active Learning, Zero-shot Learning, Data Augmentation domains as well as pre-annotation with revision in the context of multi-label classification. Active ’Learnings goal is to choose the most informative samples for labeling. As an Active Learning state-of-the-art technique Contrastive Active Learning was adapted to a multi-label case. Once there is some labeled data, we can augment samples to make the dataset more diverse. English-German-English Backtranslation was used to perform Data Augmentation. Zero-shot learning is a setup in which a Machine Learning model can make predictions for classes it was not trained to predict. Zero-shot via Textual Entailment was leveraged in this study and its usefulness for pre-annotation with revision was reported. The results on the Reviews of Electric Vehicle Charging Stations dataset show that it may be beneficial to use Active Learning and Data Augmentation in the annotation pipeline. Active Learning methods such as Contrastive Active Learning can identify samples belonging to the rarest classes while Data Augmentation via Backtranslation can improve performance especially when little training data is available. The results for Zero-shot Learning via Textual Entailment experiments show that this technique is not suitable for the production environment. Klassificeringsmodeller som tränas med övervakad inlärning kan uppnå goda resultat när en tillräcklig mängd annoterad data används. Annoteringsprocessen är dock en kostsam och tidskrävande uppgift. Det finns många metoder utarbetade för att göra annoteringspipelinen mer användar- och dataeffektiv. Detta examensarbete utforskar tekniker från områdena Active Learning, Zero-shot Learning, Data Augmentation, samt pre-annotering, där annoterarens roll är att verifiera eller revidera en klass föreslagen av systemet. Målet med Active Learning är att välja de mest informativa datapunkterna för annotering. Contrastive Active Learning utökades till fallet där en datapunkt kan tillhöra flera klasser. Om det redan finns några annoterade data kan vi utöka datamängden med artificiella datapunkter, med syfte att göra datasetet mer mångsidigt. Engelsk-Tysk-Engelsk översättning användes för att konstruera sådana artificiella datapunkter. Zero-shot-inlärning är en teknik i vilken en maskininlärningsmodell kan göra förutsägelser för klasser som den inte var tränad att förutsäga. Zero-shot via Textual Entailment utnyttjades i denna studie för att utöka datamängden med artificiella datapunkter. Resultat från datamängden “Reviews of Electric Vehicle Charging ”Stations visar att det kan vara fördelaktigt att använda Active Learning och Data Augmentation i annoteringspipelinen. Active Learning-metoder som Contrastive Active Learning kan identifiera datapunkter som tillhör de mest sällsynta klasserna, medan Data Augmentation via Backtranslation kan förbättra klassificerarens prestanda, särskilt när få träningsdata finns tillgänglig. Resultaten för Zero-shot Learning visar att denna teknik inte är lämplig för en produktionsmiljö.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::dfb1c41865a039496a44cbbde0027bfe&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::dfb1c41865a039496a44cbbde0027bfe&type=result"></script>');
-->
</script>
Large transformer models have shown great performance in multiple natural language processing tasks. However, slow inference, strong dependency on powerful hardware, and large energy consumption limit their availability. Furthermore, the best-performing models use high-resource languages such as English, which increases the difficulty of using these models for low-resource languages. Research into compressing large transformer models has been successful, using methods such as knowledge distillation. In this thesis, an existing task-agnostic knowledge distillation method is employed by using Swedish data for distillation of mBERT models further pre-trained on different amounts of Swedish data, in order to obtain a smaller multilingual model with performance in Swedish competitive with a monolingual student model baseline. It is shown that none of the models distilled from a multilingual model outperform the distilled Swedish monolingual model on Swedish named entity recognition and Swedish translated natural language understanding benchmark tasks. It is also shown that further pre-training mBERT does not significantly affect the performance of the multilingual teacher or student models on downstream tasks. The results corroborate previously published results showing that no student model outperforms its teacher. Stora transformator-modeller har uppvisat bra prestanda i flera olika uppgifter inom naturlig bearbetning av språk. Men långsam inferensförmåga, starkt beroende av kraftfull hårdvara och stor energiförbrukning begränsar deras tillgänglighet. Dessutom använder de bäst presterande modellerna högresursspråk som engelska, vilket ökar svårigheten att använda dessa modeller för lågresursspråk. Forskning om att komprimera dessa stora transformatormodeller har varit framgångsrik, med metoder som kunskapsdestillation. I denna avhandling används en existerande uppgiftsagnostisk kunskapsdestillationsmetod genom att använda svensk data för destillation av mBERT modeller vidare förtränade på olika mängder svensk data för att få fram en mindre flerspråkig modell med prestanda på svenska konkurrerande med en enspråkig elevmodell baslinje. Det visas att ingen av modellerna destillerade från en flerspråkig modell överträffar den destillerade svenska enspråkiga modellen på svensk namngiven enhetserkännande och svensk översatta naturlig språkförståelse benchmark uppgifter. Det visas också att ytterligare förträning av mBERTpåverkar inte väsentligt prestandan av de flerspråkiga lärar- eller elevmodeller för nedströmsuppgifter. Resultaten bekräftar tidigare publicerade resultat som visar att ingen elevmodell överträffar sin lärare.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::a21dbbf2aed53b2bc638d6a11fa8071e&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::a21dbbf2aed53b2bc638d6a11fa8071e&type=result"></script>');
-->
</script>
AbstractThe “Arctic Uchronotopias” special issue of Polar Record is an important contribution to scholarly reflection on resource extraction. The ideas, perspectives, and empirical cases that we encounter have significance for extractivism wherever it takes place, both inside and outside of the Arctic region. To see extractivism through an Arctic lens is particularly useful since it brings up many of the issues that are often at stake in extraction activities, but not always at the same time: geopolitics, transboundary relations, environmental and climate impacts, cultural and natural heritage, indigenous relations, rights issues, local and regional development, and lives and fates of communities. Above all, these papers bring out the full spectrum of issues and tensions related to ongoing major global shifts, such as the Great Acceleration and Overheating, and those transformations of which resource extraction forms a major part. The research presented in Arctic Uchronotopias demonstrates that affect and emotions have explanatory value in the geopolitics of Arctic resource extraction. It also shows that emotional and cognitive experience and wisdom carry values and properties that conventional Environmental Impact Assessments and other technologies of evaluation and decision-making can capture.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0032247421000097&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 7 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0032247421000097&type=result"></script>');
-->
</script>
Stilometri eller stilistisk statistik är ett forskningsområde som arbetar med att definiera särdrag för att kvantitativt studera stilistisk variation hos författare. Stilometri har mest fokuserat på författarbestämning, där uppgiften är att avgöra vem som skrivit en viss text där författaren är okänd, givet tidigare texter med kända författare. I denna stude valdes ett antal lexikala och syntaktiska stilistiska särdrag vilka användes för att bestämma författare. Experimentella resultat redovisas för två samlingar litterära verk: en mindre med 27 böcker skrivna av 25 författare och en större med 11 063 böcker skrivna av 316 författare. Neurala nätverk användes för att koda de valda särdragen som vektorer varefter de närmaste grannarna för de okända texterna i vektorrummet användes för att bestämma författarna. För den mindre samlingen uppnåddes en träffsäkerhet på 91,25% genom att använda de 50 vanligaste funktionsorden, syntaktiska dependensrelationer och ordklassinformation. För den större samlingen uppnåddes en träffsäkerhet på 69,18% med liknande särdrag. Ett användartest visar att modellen utöver att bestämma författare har potential att representera likhet mellan författares stil. Detta skulle kunna tillämpas för att rekommendera böcker till läsare baserat på stil. Stylometry is the field of research aimed at defining features for quantifying writing style, and the most studied question in stylometry has been authorship attribution, where given a set of texts with known authorship, we are asked to determine the author of a new unseen document. In this study a number of lexical and syntactic stylometric feature sets were extracted for two datasets, a smaller one containing 27 books from 25 authors, and a larger one containing 11,063 books from 316 authors. Neural networks were used to transform the features into embeddings after which the nearest neighbor method was used to attribute texts to their closest neighbor. The smaller dataset achieved an accuracy of 91.25% using frequencies of 50 most common functional words, dependency relations, and Part-of-speech (POS) tags as features, and the larger dataset achieved 69.18% accuracy using a similar feature set with 100 most common functional words. In addition to performing author attribution, a user test showed the potentials of the model in generating author similarities and hence being useful in an applied setting for recommending books to readers based on author style.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::47e49681213698f7dc8292615b2122e7&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::47e49681213698f7dc8292615b2122e7&type=result"></script>');
-->
</script>
This project explores strategies to effectively address the challenges surrounding the ‘dissonant’ heritage of totalitarian regimes. The difficulties associated with this heritage rises from multiple factors, such as the characteristics of materials and objects involved, historical and cultural contexts, political influences, ethical considerations, religious aspects, and personal beliefs of individuals involved. These differences give rise to conflicts and obstacles in preserving and managing such heritage. The main point of disagreement is whether undesired and painful objects and sites should be demolished or if they are to be preserved, how they should be appropriately presented. Therefore, it is essential to adopt a balanced approach that respects diverse perspectives, fosters dialogue, and embraces adaptive strategies. This approach is crucial for ensuring the long-term viability and meaningful interpretation of our shared collective heritage. The case study chosen is Lithuania, a former part of the Soviet Union. Most built heritage from the Soviet era may not be traditionally seen as culturally significant, but it does bear witness to collective memory. The goal is to analyze and propose an adaptive reuse project for a partially abandoned building, the former Taxi Park in Vilnius. To address historical memory, the proposal suggests a programic shift from a Taxi Park to a Film Park. This approach showcases artifacts from the Lithuanian film industry and transforms the space into an archival institution that engages with history. The building is organized in a chronological framework, with different floors that create a cohesive narrative that honors the past, preserves the present, and allows for future engagement. By incorporating these elements, the space serves educational, cultural, and future-oriented purposes.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::67528019e2e310261bb4fc35bdcb13fb&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______260::67528019e2e310261bb4fc35bdcb13fb&type=result"></script>');
-->
</script>
Silvi-Cultural Encounters: The Swedish University of Agricultural Sciences and Higher Forestry Education in Ethiopia, 1986–2009The article discusses the Swedish University of Agricultural Sciences’ support to higher forestry education in Ethiopia, which took place between 1986 and 2009 in the context of Swedish-Ethiopian development cooperation. Against a growing historical interest in transnational encounters within the field of education, it analyses how Swedish forestry experts designed educational programs and taught in new environments. The concept of “silvi-culture” is introduced to signify that the tensions that arose within this aid effort related both to the technicalities of forestry education and to diverging academic and social cultures. The article is structured around three kinds of “silvi-cultural encounters” that describe the development of the project both chronologically and thematically. These encounters are used to demonstrate how the forest as a concrete, physical place was of central importance to the Swedish experts, as well as to show how they were guided by preconceptions developed within the framework of a Swedish silvi-culture that was only partially compatible with the conditions in Ethiopia.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36368/njedh.v4i1.86&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36368/njedh.v4i1.86&type=result"></script>');
-->
</script>
Earlier research on Cold War resource politics has not focused significantly on the interests of smaller, non-colonial industrialized states. This paper examines the iron mining company LAMCO in Liberia, dominated strategically and operationally by Swedish actors and interests, between the mid-1950s and the late 1980s. It argues that the creation of LAMCO must be understood in the context of the early Cold War and its international politics, and that the enterprise's subsequent development was characterized by a specific technopolitical dynamic resulting from the encounter between the Liberian government's development strategy and the Swedish investors' need to mitigate political risks both in Liberia and at home. The findings help clarify the conditions under which actors from an ostensibly non-aligned and non-colonial country could gain access to minerals in Africa. They also contribute to our understanding of iron mining in Liberian political history, showing how LAMCO developed in close association with particular developmental policies in Liberia that sought to promote national development while simultaneously increasing the power of the Liberian presidency. Though it initially served this purpose successfully, its operations also generated a string of unexpected outcomes that eventually made the company a serious problem for the Liberian government. QC 20190902
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.exis.2019.06.008&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.exis.2019.06.008&type=result"></script>');
-->
</script>
In customer support, there are often a lot of repeat questions, and questions that does not need novel answers. In a quest to increase the productivity in the question answering task within any business, there is an apparent room for automatic answering to take on some of the workload of customer support functions. We look at clustering corpora of older queries and texts as a method for identifying groups of semantically similar questions and texts that would allow a system to identify new queries that fit a specific cluster to receive a connected, automatic response. The approach compares the performance of K-means and density-based clustering algorithms on three different corpora using document embeddings encoded with BERT. We also discuss the digital transformation process, why companies are unsuccessful in their implementation as well as the possible room for a new more iterative model. I kundtjänst förekommer det ofta upprepningar av frågor samt sådana frågor som inte kräver unika svar. I syfte att öka produktiviteten i kundtjänst funktionens arbete att besvara dessa frågor undersöks metoder för att automatisera en del av arbetet. Vi undersöker olika metoder för klusteranalys, applicerat på existerande korpusar innehållande texter så väl som frågor. Klusteranalysen genomförs i syfte att identifiera dokument som är semantiskt lika, vilket i ett automatiskt system för frågebevarelse skulle kunna användas för att besvara en ny fråga med ett existerande svar. En jämförelse mellan hur K-means och densitetsbaserad metod presterar på tre olika korpusar vars dokumentrepresentationer genererats med BERT genomförs. Vidare diskuteras den digitala transformationsprocessen, varför företag misslyckas avseende implementation samt även möjligheterna för en ny mer iterativ modell.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::406dd4c59813a402128b69ac2bab7f92&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______681::406dd4c59813a402128b69ac2bab7f92&type=result"></script>');
-->
</script>
Text clustering is a problem where texts are partitioned into homogeneous clusters, such as partitioning them based on their sentiment value. Two techniques to address the problem are representation learning, in particular language representation models, and clustering algorithms. The state-ofthe-art language models are based on neural networks, in particular the Transformer architecture, and the models are used to transform a text into a point in a high dimensional vector space. The texts are then clustered using a clustering algorithm, and a recognized partitional clustering algorithm is k-Means. Its goal is to find centroids that represent the clusters (partitions) by minimizing a distance measure. Two influential parameters of k-Means are the number of clusters and the initial centroids. Multiple heuristics exist to decide how the parameters are selected. The heuristic of using domain knowledge is commonly used when it is available, e.g., th