Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_001::3ec066ad05d98ba023be2627aa6f80e4&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_001::3ec066ad05d98ba023be2627aa6f80e4&type=result"></script>');
-->
</script>
Abstract. Ocean color remote sensing offers two decades-long time series of information on phytoplankton abundance. However, determining the structure of the phytoplankton community from this signal is not straightforward, and many uncertainties remain to be evaluated, despite multiple intercomparison efforts of the different available algorithms. Here, we use remote sensing and machine learning to infer the abundance of seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. Our dataset is to our knowledge the most comprehensive and complete, available to describe phytoplankton community structure at a global scale using a molecular marker that defines relative abundances of all phytoplankton groups simultaneously. The methodology shows satisfying performances to provide robust estimates of phytoplankton groups using satellite data, with few limitations regarding the global generalization of the method. Furthermore, this new satellite-based methodology allows a valuable global intercomparison with the pigment-based approach used in in-situ and satellite data to identify phytoplankton groups. Nevertheless, these datasets show different, yet coherent information on the phytoplankton, valuable for the understanding of community structure. This makes remote sensing observations excellent tools to collect Essential Biodiversity Variables and provide a foundation for developing marine biodiversity forecasts.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-1421&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-1421&type=result"></script>');
-->
</script>
AbstractThe Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface–atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-14-00130.1&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 136 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-14-00130.1&type=result"></script>');
-->
</script>
Accompanying material, text, data and figures for the article de Vargas et al., 'Eukaryotic plankton diversity in the sunlit ocean', Science 348, 1261605 (2015), doi: 10.1126/science.1261605
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2659::bad9afc425e9e1445bf0b64ce67c5ecd&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2659::bad9afc425e9e1445bf0b64ce67c5ecd&type=result"></script>');
-->
</script>
AbstractInvestigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep46192&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 17 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep46192&type=result"></script>');
-->
</script>
Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 160 | |
popularity | Top 1% | |
influence | Top 10% | |
impulse | Top 1% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>');
-->
</script>
handle: 10037/19519
In addition to indirect support to fisheries, marine habitats also provide non-use benefits often overlooked in most bioeconomic models. We expand a dynamic bioeconomic fisheries model where presence of natural habitats reduces fishing cost via aggregation effects and supplies non-use benefits. The theoretical model is illustrated with an application to cold-water corals in Norway where two fishing methods are considered–destructive bottom trawl and non-destructive coastal gear. Non-use values of cold-water corals in Norway are estimated using a discrete choice experiment. Both the theoretical model and its empirical applications demonstrate how non-use values impact optimal fishing practices.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/693477&type=result"></script>');
-->
</script>
Green | |
bronze |
citations | 20 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/693477&type=result"></script>');
-->
</script>
doi: 10.1002/2016gl070294
AbstractPaleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher‐than‐present sea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower‐than‐present SSTs in the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve this contradiction by complementing SST data based on planktic foraminiferal abundances with surface salinity changes using hydrogen isotopic compositions of alkenones in a core from the central Nordic Seas. The data indicate the prevalence of a relatively cold, low‐salinity, surface water layer in the Nordic Seas during most of MIS 11. In spite of the low‐density surface layer, which was kept buoyant by continuous melting of surrounding glaciers, warmer Atlantic water was still propagating northward at the subsurface thus maintaining meridional overturning circulation. This study can help to better constrain the impact of continuous melting of Greenland and Arctic ice on high‐latitude ocean circulation and climate.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl070294&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 12 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl070294&type=result"></script>');
-->
</script>
AbstractThe impact of climate change on diversity, functioning and biogeography of marine plankton remains a major unresolved issue. Here, niche theory is applied to plankton metagenomes of 6 size fractions, from viruses to meso-zooplankton, sampled during theTaraOceans expedition. Niches are used to derive plankton size-dependent structuring of the oceans south of 60°N inclimato-genomicprovinces characterized by signature genomes. By 2090, assuming the RCP8.5 high warming scenario, provinces would be reorganized over half of the considered ocean area and quasi-systematically displaced poleward. Particularly, tropical provinces would expand at the expense of temperate ones. Sea surface temperature is identified as the main driver of changes (50%) followed by phosphate (11%) and salinity (10%). Compositional shifts among key planktonic groups suggest impacts on the nitrogen and carbon cycles. Provinces are linked to estimates of carbon export fluxes which are projected to decrease on average by 4% in response to biogeographical restructuring.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.10.20.347237&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 4 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2020.10.20.347237&type=result"></script>');
-->
</script>
pmid: 29263561
pmc: PMC5726375
AbstractGreenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine‐terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine‐terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine‐based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl074954&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 492 | |
popularity | Top 0.1% | |
influence | Top 1% | |
impulse | Top 0.1% |