Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Article 2021 Turkey TurkishJournal of Aviation Seçkiner, Serap Ulusam; Atay, Metehan; Eroğlu, Yunus;Seçkiner, Serap Ulusam; Atay, Metehan; Eroğlu, Yunus;Bu makalede, havacılık sektöründe robotik süreç otomasyonlarının kullanılmasına ilişkin olası faydalar ve öngörüler sunmaktadır. Türkiye’de düşük maliyetli havayolu şirketi ve bunların konsepti ve uygulaması üzerine gidildiğinde robotik süreç otomasyonlarının önemli faydalar sağlayacağı düşünülmektedir. Küresel COVID-19 salgını nedeniyle dünyada ortaya çıkan havacılık krizinin, pek çok ulusu robotik süreç otomasyonu kullanımına ittiği ve farklı uygulamalarla maliyet kalemlerindeki azalış ve verimlilikteki kaybı giderme adına adımlar attığı görülmektedir. Gelecekte süreçlerin daha verimli yönetilebilmesi, yüksek hacimli ve düşük değişiklik gösteren işlerin daha sıkı kontroller altında hatasız yapılabilmesi ve havacılık gibi yüksek maliyetli endüstrilerin maliyet boyutlarının azaltılabilmesi için gelecek trendler, mevcut prematüre uygulamalar ve muhtemel gelecek uygulama alanları gösterilmiştir. This article provides foresights on potential new benefits of using robotic process automation in the aviation industry. Low cost airline management in Turkey and processes are expected to provide significant benefits of robotic automation applications when on the go. It is seen that the aviation crisis, which emerged in the world due to the global COVID-19 epidemic, pushed many nations to use robotic process automation and took steps to reduce cost items and loss in efficiency with different applications. Future trends, current premature applications and possible future application areas have been shown in order to manage processes more efficiently in the future, to make high-volume and low-change jobs under tighter controls, and to reduce the cost dimensions of high-cost industries such as aviation.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::39781832ade498297d6d18c09aa30ae9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 Turkey EnglishTMMOB Makina Mühendisleri Odası Eroğlu, Yunus;Eroğlu, Yunus;Hükumetler, bir pandemi salgını sırasında stratejik kararlar alırken, halk sağlığı ve ekonomi arasında bir ikilemle karşı karşıyadır. Özellikle salgın dönemlerinde hükumetler tarafından alınacak stratejik kararlar açısından vaka sayısını tahmin etmek ve belirtilen ikilemi yönetmek büyük önem taşımaktadır. Bugün neredeyse tüm ülkeler için önemli konulardan birisi de Covid-19 salgınıdır. Ne yazık ki, henüz Covid-19 için etkili bir aşı veya tedavi bulunamamıştır. Ayrıca, bu çalışmanın hazırlığı sırasında, Dünya Sağlık Örgütü tarafından dünya çapında toplam vaka sayısının on üç milyondan fazla olduğu bildirilmiştir. Böyle büyük bir salgınla başa çıkmak için çeşitli karantina önlemlerinin alınması gerekli olmuştur. Hükumetler tarafından alınan karantina önlemleri, ülkeleri ekonomik krizle karşı karşıya getirmiştir. Bu durum ekonomik belirsizlikler yaratmaktadır ve hükumetleri doğru ve en az zararlı stratejik kararlar almak için muazzam bir baskı altına sokmaktadır. Bu nedenlerle hükumetler, ani bir karar vermek yerine durumu adım adım gözlemleyerek Covid-19 için stratejik kararlar almayı tercih etmektedirler. Eğer pandemi vakalarının sayısı belirlenmiş bir zamandan önce tahmin edilebilirse, hükumetlerin halk sağlığı ve ekonomi ikilemini daha doğru bir şekilde yönetmeleri için önemli bir rehber olarak kullanılabilir. Bu nedenle, bu çalışmada 7 gün önceden Covid-19 vakalarını tahmin etmek için yapay sinir ağı (YSA) ve derin öğrenme (uzun-kısa süreli bellek, LSTM ağları) modelleri sunulmuştur. Önerilen modeller Türkiye’nin gerçek verileri üzerinde test edilmiştir. Sonuçlar LSTM modellerinin eğitim seti için hem kümülatif hem de yeni vaka tahminlerinde YSA modellerinden daha iyi performans gösterdiğini göstermiştir. Önerilen modellerin tüm veri seti üzerindeki performansları kıyaslandığında YSA ve LSTM algoritmalarının birbirleri ile rekabet edebilir sonuçlar verdiği gözlemlenmiştir. Ayrıca hem YSA hem de LSTM modellerinin kümülatif vaka tahmini performanslarının yeni vaka tahminlerinden daha iyi olduğu gözlenmiştir. Governments face a dilemma between public health and the economy while making strategic decisions on health during a pandemic outbreak. It is of great importance to forecast the number of cases in terms of strategic decisions to be taken by governments especially in outbreak periods and to manage the dilemma mentioned. One of the important issues today is the Covid-19 outbreak for almost all countries. Unfortunately, no effective vaccine or treatment has been found for Covid-19 yet. At the time of this study, however, it was reported that the total number of reported cases by the World Health Organization worldwide was more than thirteen million. Various quarantine measures have been necessary to deal with such a large epidemic. Quarantine measures taken by governments bring countries to face to face with the economic crisis. This creates economic uncertainties and puts governments under tremendous pressure to make accurate and least harmful strategic decisions. For these reasons, governments prefer to make strategic decisions for Covid-19 step by step observing the situation rather than making a sudden decision. If the number of pandemic cases could be predicted before a predetermined time, it would be used as an important guide for governments to manage public health and economic dilemma more accurately. Therefore, this study provides artificial neural network (ANN) and deep learning models (long-short term memory, LSTM networks) to forecast Covid-19 cases before 7-day. The proposed models were tested on real data for Turkey. The results showed that LSTM models performed better than ANN models in both cumulative cases and new cases on the training data set. Comparing the performance of the proposed models over the whole data set, it was observed that the ANN and LSTM algorithms gave competitive results. In addition, the cumulative case forecast performances of both ANN and LSTM models were observed to be better than the new case forecast
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::305075677ef1c9ceb711d527406c4074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021 Turkey Turkishİskenderun Teknik Üniversitesi / Lisansüstü Eğitim Enstitüsü / Turizm ve Otelcilik İşletmeciliği Ana Bilim Dalı Kalaba, Bertan;Kalaba, Bertan;Service quality is seen as a decisive criterion for the success of an institution or business. Knowing how the services offered in museums are perceived by visitors makes an important contribution to museums in seeing their strengths or weaknesses and improving quality. Individuals participate different recreational activities at various times to regenerate, have fun, experience different things and improve themselves. Visiting museum is the one of these activities. The main purpose of the research is to examine the relationship between the service quality perceptions of the visitors of Hatay Archeology Museum and their level of renewal. In line with the purpose of the research, the survey technique was used as a data collection tool. The survey data were collected according to the non-random convenience sampling method between 17.09.2020 and 16.11.2020. Due to the risks posed by the Covid-19 epidemic while applying the survey, some of the research data were obtained by face-to-face and online. Within the scope of the research, analyzes were made in line with the data obtained from 404 questionnaires. Frequency analysis, test of validity, test of reliability, test of normality, correlation analysis and regression analysis were applied to the data. It has been determined that there is a positive and statistically significant relationship between the service quality perceptions of the participants towards the Hatay Archeology Museum and their level of renewal, and also that their perceptions of service quality have a positive and statistically significant effect on the renewal levels. Hizmet kalitesi, bir kurum veya işletmenin başarıya ulaşmasında belirleyici bir kriter olarak görülmektedir. Müzelerde sunulan hizmetlerin ziyaretçiler tarafından nasıl algılandığının bilinmesi, müzelere güçlü veya zayıf yönlerini görme ve kalitenin iyileştirmesi konusunda önemli bir katkı sağlamaktadır. Bireyler çeşitli zamanlarda yenilenmek, eğlenmek, farklı şeyler deneyimlemek ve kendilerini geliştirmek amacıyla farklı rekreasyon aktivitelerine katılmaktadır. Bu aktivitelerden bir tanesi de müze ziyaretidir. Araştırmanın ana amacı, Hatay Arkeoloji Müzesi ziyaretçilerinin hizmet kalitesi algıları ile yenilenme düzeyleri arasındaki ilişkiyi incelemektir. Araştırmanın amacı doğrultusunda veri toplama aracı olarak anket tekniği kullanılmıştır. Anket verileri 17.09.2020-16.11.2020 tarihleri arasında tesadüfi olmayan kolayda örneklem yöntemine göre toplanmıştır. Anket uygulanırken Covid-19 salgının getirdiği riskler nedeniyle araştırma verilerinin bir kısmı yüz yüze, bir kısmı ise çevrimiçi ortamda elde edilmiştir. Araştırma kapsamında 404 anket formundan elde edilen veriler doğrultusunda analizler gerçekleştirilmiştir. Verilere frekans analizi, geçerlilik ve güvenirlik testleri, normallik testi, korelasyon ve regresyon analizleri uygulanmıştır. Katılımcıların Hatay Arkeoloji Müzesi'ne yönelik hizmet kalitesi algıları ile yenilenme düzeyleri arasında pozitif yönlü ve istatistiki açıdan anlamlı bir ilişki olduğu, ayrıca hizmet kalitesi algılarının yenilenme düzeyleri üzerinde pozitif yönde ve istatistiki açıdan anlamlı bir etkisinin bulunduğu tespit edilmiştir.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::625f141369476cc6876710ff60e90a11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021 Turkey Turkishİskenderun Teknik Üniversitesi / Lisansüstü Eğitim Enstitüsü / Turizm ve Otelcilik İşletmeciliği Ana Bilim Dalı Duman, Damla;Duman, Damla;Especially since the 1980s, a rapid change and development process has begun to meet individual needs worldwide. Consumer behavior towards the tourism industry has also been affected by this change. While mass tourism, which was previously associated with sea, sand and sun tourism, was popular, nowadays, experiential tourism types are preferred to meet individualized needs. The increase in the number of trips made to get to know and experience the local cuisine recently is an example of the mentioned change. In this context, increasing the share of developing countries from the global tourism pie depends on their ability to meet changing consumer needs. Within the scope of this thesis, it has been examined whether the destination image has a mediating effect in the relationship between local cuisine elements and destination selection. The research was designed according to the relational screening model, which is one of the general screening models. Questionnaire technique was used to collect data. Due to the fact that the data collection process coincided with the Covid-19 pandemic period, the questionnaires were administered online using the deliberate (decision-judicial) sampling technique. As a result of removing the questionnaires with erroneous and missing data, analyzes were made on the data obtained with 382 questionnaires. Descriptive analysis, explanatory factor analysis (EFA), correlation and regression analyses were applied on the data. As a result of the analysis, it has been determined that the local cuisine elements have a positive and significant effect on the destination image and destination selection, and the destination image has a positive and significant effect on the destination selection. In addition, it has been concluded that the local cuisine elements affect the destination selection indirectly through the destination image. In this context, it can be said that there is a partial mediation effect of the destination image among the variables. The study was concluded by discussing the findings in the light of the literature and making suggestions for tourism industry practitioners and future research. Key Words: Local cuisine, destination image, destination selection, hatay Özellikle 1980lerden itibaren dünya çapında bireysel ihtiyaçların karşılanması adına hızlı bir değişim ve gelişim süreci yaşanmaya başlamıştır. Bu değişimden, turizm endüstrisine yönelik geliştirilen tüketici davranışları da etkilenmiştir. Önceleri deniz, kum, güneş turizmiyle ilişkilendirilen kitle turizmi popülerken, günümüzde daha çok bireyselleştirilmiş ihtiyaçları karşılamaya yönelik deneyimsel turizm türleri tercih edilmektedir. Son zamanlarda yöresel mutfakları tanıma ve deneyimleme amacıyla gerçekleştirilen seyahatlerin artması sözü edilen değişime bir örnektir. Bu bağlamda gelişmekte olan ülkelerin küresel turizm pastasından aldığı payın artırılması, değişen tüketici ihtiyaçlarını karşılama gücüne bağlıdır. Bu tez çalışması kapsamında yöresel mutfak unsurları ile destinasyon seçimi arasındaki ilişkide destinasyon imajının aracılık etkisinin olup olmadığı incelenmiştir. Araştırma genel tarama modellerinden biri olan, ilişkisel tarama modeline göre desenlenmiştir. Verilerin toplanmasında anket tekniğinden yararlanılmıştır. Veri toplama sürecinin Covid-19 pandemi dönemine denk gelmesi nedeniyle anketler, kasti (kararsal-yargısal) örnekleme tekniği kullanılarak çevrimiçi ortamda uygulanmıştır. Hatalı ve eksik verilerin yer aldığı anket formlarının çıkarılması sonucunda 382 anket formuyla elde edilen veriler üzerinde analizler yapılmıştır. Veriler üzerinde, betimleyici analiz, açıklayıcı faktör analizi (AFA), kolerasyon ve regresyon analizleri uygulanmıştır. Yapılan analizler sonucunda yöresel mutfak unsurlarının destinasyon imajı ve destinasyon seçimi üzerinde, destinasyon imajının destinasyon seçimi üzerinde pozitif yönlü anlamlı bir etkisinin olduğu tespit edilmiştir. Ayrıca yöresel mutfak unsurlarının destinasyon seçimini dolaylı olarak destinasyon imajı üzerinden etkilediği sonucuna da erişilmiştir. Bu bağlamda değişkenler arasında destinasyon imajının kısmi aracılık etkisinin olduğu söylenebilir. Çalışma, elde edilen bulguların alanyazın ışığında tartışılmasıyla turizm endüstrisi uygulayıcılarına ve gelecekteki araştırmalara önerilerde bulunularak sonlandırılmıştır. Anahtar Kelimeler: Yöresel mutfak, destinasyon imajı, destinasyon seçimi, hatay
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::63d8041e9259ce0cb3dbaf21bcbc5ce4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Turkey EnglishJournal of Aviation Kasım KİRACI; Veysi ASKER; H. Yusuf GÜNGÖR;Kasım KİRACI; Veysi ASKER; H. Yusuf GÜNGÖR;doi: 10.30518/jav.1032824
The Covid-19 pandemic has caused many industries, especially the air transport industry, to experience a crisis. It is important to analyze the change in the financial performance of global aircraft leasing companies, one of the most important stakeholders of the airline industry during this crisis period. Therefore, this study aims to analyze the financial performance of global aircraft leasing companies in the period from Q1 2018 to Q4 2020. In the study, we analyzed the financial data of 6 global aircraft leasing companies using the CRITIC-based CODAS method. Our findings indicate that some aircraft leasing companies have been ahead of the competition due to the Covid-19 pandemic, while others have fallen behind in the financial performance rankings. Therefore, our results prove that aircraft leasing companies are affected by the covid-19 pandemic. Our analysis on a sectoral basis indicates the relationship between the debt repayment capacity of airlines and the performance of leasing companies.
Journal of Aviation arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2022Data sources: Iskenderun Technical University Institutional RepositoryDicle Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2022Data sources: Dicle Üniversitesi Kurumsal Akademik Arşiv Sistemiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30518/jav.1032824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 5 Powered bydescription Publicationkeyboard_double_arrow_right Article 2021 Turkey EnglishÇukurova Üniversitesi Mühendislik Fakültesi Dergisi Genç, Olcay;Genç, Olcay;The goal of this study is, in an unexpected exceptional situation such as Covid-19 outbreak, to demonstrate how the extent of understanding of the situation and its social and economic impact on the construction sector and on its practitioners can be defined and exposed. Hence, to provide insights to the practitioners to prepare the sector and its professionals for the next extraordinary situation. A questionnaire survey is prepared and delivered personally and via the Chamber of Civil Engineers to the civil engineers who work for public or private sectors, and then a comparative analysis is carried out. The exploratory results of the study show that the civil engineers follow precaution rules against Covid-19, they stay home unless compulsory matters, they are highly concerned about global, national and family economies after coronavirus pandemic and, while the majority of the civil engineers somehow continue working during the pandemic, only a very small portion of the private sector companies bankrupt. Bu çalışmanın amacı, Covid-19 salgını gibi beklenmedik bir durumda, durumun anlaşılma derecesinin ve bunun inşaat sektörü ve uygulayıcıları üzerindeki sosyal ve ekonomik etkisinin nasıl tanımlanıp ortaya çıkarılabileceğini göstermektir. Bu nedenle, sektörü ve profesyonellerini bir sonraki olağanüstü duruma hazırlamak için uygulayıcılara öngörü sağlamaktır. Kamu veya özel sektörde çalışan inşaat mühendislerine anket çalışması hazırlanarak bizzat ve İnşaat Mühendisleri Odası aracılığı ile ulaştırılmakta ve ardından karşılaştırmalı bir analiz yapılmaktadır. Çalışmanın sonuçları, inşaat mühendislerinin Covid-19'a karşı önlem kurallarına uyduğunu, zorunlu olmadıkça evde kaldıklarını, koronavirüs pandemisinden sonra küresel, ulusal ve aile ekonomileri konusunda son derece endişelendiklerini ve inşaat mühendislerinin büyük çoğunluğunun bir şekilde pandemi sırasında çalışmaya devam ettiklerini ve özel sektör şirketlerinin sadece çok küçük bir kısmının iflas ettiğini göstermektedir.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::912d611b985a542491ff0b9712175c2a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Turkey EnglishMultidisciplinary Digital Publishing Institute Mustafa Uğur UÇAR; ERSIN OZDEMIR;Mustafa Uğur UÇAR; ERSIN OZDEMIR;With COVID-19, formal education was interrupted in all countries and the importance of distance learning has increased. It is possible to teach any lesson with various communication tools but it is difficult to know how far this lesson reaches to the students. In this study, it is aimed to monitor the students in a classroom or in front of the computer with a camera in real time, recognizing their faces, their head poses, and scoring their distraction to detect student engagement based on their head poses and Eye Aspect Ratios. Distraction was determined by associating the students’ attention with looking at the teacher or the camera in the right direction. The success of the face recognition and head pose estimation was tested by using the UPNA Head Pose Database and, as a result of the conducted tests, the most successful result in face recognition was obtained with the Local Binary Patterns method with a 98.95% recognition rate. In the classification of student engagement as Engaged and Not Engaged, support vector machine gave results with 72.4% accuracy. The developed system will be used to recognize and monitor students in the classroom or in front of the computer, and to determine the course flow autonomously.
Iskenderun Technical... arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2022Data sources: Iskenderun Technical University Institutional RepositoryElectronicsOther literature type . Article . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11091500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2022 Turkey EnglishSpringer Murat UÇAR;Murat UÇAR;The coronavirus disease (COVID-19) is an important public health problem that has spread rapidly around the world and has caused the death of millions of people. Therefore, studies to determine the factors affecting the disease, to perform preventive actions and to find an effective treatment are at the forefront. In this study, a deep learning and segmentation-based approach is proposed for the detection of COVID-19 disease from computed tomography images. The proposed model was created by modifying the encoder part of the U-Net segmentation model. In the encoder part, VGG16, ResNet101, DenseNet121, InceptionV3 and EfficientNetB5 deep learning models were used, respectively. Then, the results obtained with each modified U-Net model were combined with the majority vote principle and a final result was reached. As a result of the experimental tests, the proposed model obtained 85.03% Dice score, 89.13% sensitivity and 99.38% specificity on the COVID-19 segmentation test dataset. The results obtained in the study show that the proposed model will especially benefit clinicians in terms of time and cost.
Iskenderun Technical... arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2022Data sources: Iskenderun Technical University Institutional RepositoryNeural Computing and ApplicationsArticle . 2022License: https://www.springer.com/tdmData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00521-022-07653-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020 TurkeyAtaberk Donmez; Ahmet Sureyya Rifaioglu; Aybar C. Acar; Tunca Doğan; Rengul Cetin-Atalay; Volkan Atalay;pmc: PMC7454317 , PMC7992908
Abstract Summary iBioProVis is an interactive tool for visual analysis of the compound bioactivity space in the context of target proteins, drugs and drug candidate compounds. iBioProVis tool takes target protein identifiers and, optionally, compound SMILES as input, and uses the state-of-the-art non-linear dimensionality reduction method t-Distributed Stochastic Neighbor Embedding (t-SNE) to plot the distribution of compounds embedded in a 2D map, based on the similarity of structural properties of compounds and in the context of compounds’ cognate targets. Similar compounds, which are embedded to proximate points on the 2D map, may bind the same or similar target proteins. Thus, iBioProVis can be used to easily observe the structural distribution of one or two target proteins’ known ligands on the 2D compound space, and to infer new binders to the same protein, or to infer new potential target(s) for a compound of interest, based on this distribution. Principal component analysis (PCA) projection of the input compounds is also provided, Hence the user can interactively observe the same compound or a group of selected compounds which is projected by both PCA and embedded by t-SNE. iBioProVis also provides detailed information about drugs and drug candidate compounds through cross-references to widely used and well-known databases, in the form of linked table views. Two use-case studies were demonstrated, one being on angiotensin-converting enzyme 2 (ACE2) protein which is Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein receptor. ACE2 binding compounds and seven antiviral drugs were closely embedded in which two of them have been under clinical trial for Coronavirus disease 19 (COVID-19). Availability and implementation iBioProVis and its carefully filtered dataset are available at https://ibpv.kansil.org/ for public use. Contact vatalay@metu.edu.tr Supplementary information Supplementary data are available at Bioinformatics online.
Bioinformatics arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2020Data sources: Iskenderun Technical University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/bioinformatics/btaa666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2021 Turkey EnglishMehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Kiracı, Kasım;Kiracı, Kasım;The aim of this study is to investigate which financial variables increases or decreases the risk of the bankruptcy of airlines during periods of crisis when there is a possibility of financial distress. In this study, financial variables that affect financial distress in airlines and the possibility of bankruptcy were analyzed. In the framework of the study, the financial data from 35 airlines were examined. We employed the Altman (1968) Z-score, Springate (1978) S-score and Zmijewski (1984) J-score financial distress prediction models. The findings indicate that in times of crisis, when the probability of financial distress and bankruptcy increases (such as with Covid-19), leverage level, asset structure, firm size, firm profitability and liquidity ratio have a significant effect on an airline’s probability of bankruptcy score. Bu çalışmanın amacı, finansal sıkıntı olasılığının olduğu kriz dönemlerinde, havayollarının iflas riskini artıran veya azaltan finansal değişkenlerin araştırılmasıdır. Bu çalışmada, havayollarında finansal sıkıntıyı veya iflas olasılığını etkileyen finansal değişkenler incelenmiştir. Çalışma kapsamında 35 havayolunun finansal verileri incelenmiştir. Altman (1968) Z-skor, Springate (1978) S-skor ve Zmijewski (1984) J-skor finansal sıkıntı tahmin modellerinden yararlanılmıştır. Bulgular, kriz zamanlarında diğer bir ifadeyle finansal sıkıntı ve iflas olasılığının arttığı durumlarda (Covid-19 gibi), kaldıraç seviyesi, varlık yapısı, firma büyüklüğü, firma karlılığı ve likidite oranının havayolu finansal sıkıntı veya iflas olasılığını önemli ölçüde etkilediğini göstermektedir.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::8df9d20d6dbaa33b7dcc954a5f6f1559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2021 Turkey TurkishJournal of Aviation Seçkiner, Serap Ulusam; Atay, Metehan; Eroğlu, Yunus;Seçkiner, Serap Ulusam; Atay, Metehan; Eroğlu, Yunus;Bu makalede, havacılık sektöründe robotik süreç otomasyonlarının kullanılmasına ilişkin olası faydalar ve öngörüler sunmaktadır. Türkiye’de düşük maliyetli havayolu şirketi ve bunların konsepti ve uygulaması üzerine gidildiğinde robotik süreç otomasyonlarının önemli faydalar sağlayacağı düşünülmektedir. Küresel COVID-19 salgını nedeniyle dünyada ortaya çıkan havacılık krizinin, pek çok ulusu robotik süreç otomasyonu kullanımına ittiği ve farklı uygulamalarla maliyet kalemlerindeki azalış ve verimlilikteki kaybı giderme adına adımlar attığı görülmektedir. Gelecekte süreçlerin daha verimli yönetilebilmesi, yüksek hacimli ve düşük değişiklik gösteren işlerin daha sıkı kontroller altında hatasız yapılabilmesi ve havacılık gibi yüksek maliyetli endüstrilerin maliyet boyutlarının azaltılabilmesi için gelecek trendler, mevcut prematüre uygulamalar ve muhtemel gelecek uygulama alanları gösterilmiştir. This article provides foresights on potential new benefits of using robotic process automation in the aviation industry. Low cost airline management in Turkey and processes are expected to provide significant benefits of robotic automation applications when on the go. It is seen that the aviation crisis, which emerged in the world due to the global COVID-19 epidemic, pushed many nations to use robotic process automation and took steps to reduce cost items and loss in efficiency with different applications. Future trends, current premature applications and possible future application areas have been shown in order to manage processes more efficiently in the future, to make high-volume and low-change jobs under tighter controls, and to reduce the cost dimensions of high-cost industries such as aviation.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::39781832ade498297d6d18c09aa30ae9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020 Turkey EnglishTMMOB Makina Mühendisleri Odası Eroğlu, Yunus;Eroğlu, Yunus;Hükumetler, bir pandemi salgını sırasında stratejik kararlar alırken, halk sağlığı ve ekonomi arasında bir ikilemle karşı karşıyadır. Özellikle salgın dönemlerinde hükumetler tarafından alınacak stratejik kararlar açısından vaka sayısını tahmin etmek ve belirtilen ikilemi yönetmek büyük önem taşımaktadır. Bugün neredeyse tüm ülkeler için önemli konulardan birisi de Covid-19 salgınıdır. Ne yazık ki, henüz Covid-19 için etkili bir aşı veya tedavi bulunamamıştır. Ayrıca, bu çalışmanın hazırlığı sırasında, Dünya Sağlık Örgütü tarafından dünya çapında toplam vaka sayısının on üç milyondan fazla olduğu bildirilmiştir. Böyle büyük bir salgınla başa çıkmak için çeşitli karantina önlemlerinin alınması gerekli olmuştur. Hükumetler tarafından alınan karantina önlemleri, ülkeleri ekonomik krizle karşı karşıya getirmiştir. Bu durum ekonomik belirsizlikler yaratmaktadır ve hükumetleri doğru ve en az zararlı stratejik kararlar almak için muazzam bir baskı altına sokmaktadır. Bu nedenlerle hükumetler, ani bir karar vermek yerine durumu adım adım gözlemleyerek Covid-19 için stratejik kararlar almayı tercih etmektedirler. Eğer pandemi vakalarının sayısı belirlenmiş bir zamandan önce tahmin edilebilirse, hükumetlerin halk sağlığı ve ekonomi ikilemini daha doğru bir şekilde yönetmeleri için önemli bir rehber olarak kullanılabilir. Bu nedenle, bu çalışmada 7 gün önceden Covid-19 vakalarını tahmin etmek için yapay sinir ağı (YSA) ve derin öğrenme (uzun-kısa süreli bellek, LSTM ağları) modelleri sunulmuştur. Önerilen modeller Türkiye’nin gerçek verileri üzerinde test edilmiştir. Sonuçlar LSTM modellerinin eğitim seti için hem kümülatif hem de yeni vaka tahminlerinde YSA modellerinden daha iyi performans gösterdiğini göstermiştir. Önerilen modellerin tüm veri seti üzerindeki performansları kıyaslandığında YSA ve LSTM algoritmalarının birbirleri ile rekabet edebilir sonuçlar verdiği gözlemlenmiştir. Ayrıca hem YSA hem de LSTM modellerinin kümülatif vaka tahmini performanslarının yeni vaka tahminlerinden daha iyi olduğu gözlenmiştir. Governments face a dilemma between public health and the economy while making strategic decisions on health during a pandemic outbreak. It is of great importance to forecast the number of cases in terms of strategic decisions to be taken by governments especially in outbreak periods and to manage the dilemma mentioned. One of the important issues today is the Covid-19 outbreak for almost all countries. Unfortunately, no effective vaccine or treatment has been found for Covid-19 yet. At the time of this study, however, it was reported that the total number of reported cases by the World Health Organization worldwide was more than thirteen million. Various quarantine measures have been necessary to deal with such a large epidemic. Quarantine measures taken by governments bring countries to face to face with the economic crisis. This creates economic uncertainties and puts governments under tremendous pressure to make accurate and least harmful strategic decisions. For these reasons, governments prefer to make strategic decisions for Covid-19 step by step observing the situation rather than making a sudden decision. If the number of pandemic cases could be predicted before a predetermined time, it would be used as an important guide for governments to manage public health and economic dilemma more accurately. Therefore, this study provides artificial neural network (ANN) and deep learning models (long-short term memory, LSTM networks) to forecast Covid-19 cases before 7-day. The proposed models were tested on real data for Turkey. The results showed that LSTM models performed better than ANN models in both cumulative cases and new cases on the training data set. Comparing the performance of the proposed models over the whole data set, it was observed that the ANN and LSTM algorithms gave competitive results. In addition, the cumulative case forecast performances of both ANN and LSTM models were observed to be better than the new case forecast
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::305075677ef1c9ceb711d527406c4074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021 Turkey Turkishİskenderun Teknik Üniversitesi / Lisansüstü Eğitim Enstitüsü / Turizm ve Otelcilik İşletmeciliği Ana Bilim Dalı Kalaba, Bertan;Kalaba, Bertan;Service quality is seen as a decisive criterion for the success of an institution or business. Knowing how the services offered in museums are perceived by visitors makes an important contribution to museums in seeing their strengths or weaknesses and improving quality. Individuals participate different recreational activities at various times to regenerate, have fun, experience different things and improve themselves. Visiting museum is the one of these activities. The main purpose of the research is to examine the relationship between the service quality perceptions of the visitors of Hatay Archeology Museum and their level of renewal. In line with the purpose of the research, the survey technique was used as a data collection tool. The survey data were collected according to the non-random convenience sampling method between 17.09.2020 and 16.11.2020. Due to the risks posed by the Covid-19 epidemic while applying the survey, some of the research data were obtained by face-to-face and online. Within the scope of the research, analyzes were made in line with the data obtained from 404 questionnaires. Frequency analysis, test of validity, test of reliability, test of normality, correlation analysis and regression analysis were applied to the data. It has been determined that there is a positive and statistically significant relationship between the service quality perceptions of the participants towards the Hatay Archeology Museum and their level of renewal, and also that their perceptions of service quality have a positive and statistically significant effect on the renewal levels. Hizmet kalitesi, bir kurum veya işletmenin başarıya ulaşmasında belirleyici bir kriter olarak görülmektedir. Müzelerde sunulan hizmetlerin ziyaretçiler tarafından nasıl algılandığının bilinmesi, müzelere güçlü veya zayıf yönlerini görme ve kalitenin iyileştirmesi konusunda önemli bir katkı sağlamaktadır. Bireyler çeşitli zamanlarda yenilenmek, eğlenmek, farklı şeyler deneyimlemek ve kendilerini geliştirmek amacıyla farklı rekreasyon aktivitelerine katılmaktadır. Bu aktivitelerden bir tanesi de müze ziyaretidir. Araştırmanın ana amacı, Hatay Arkeoloji Müzesi ziyaretçilerinin hizmet kalitesi algıları ile yenilenme düzeyleri arasındaki ilişkiyi incelemektir. Araştırmanın amacı doğrultusunda veri toplama aracı olarak anket tekniği kullanılmıştır. Anket verileri 17.09.2020-16.11.2020 tarihleri arasında tesadüfi olmayan kolayda örneklem yöntemine göre toplanmıştır. Anket uygulanırken Covid-19 salgının getirdiği riskler nedeniyle araştırma verilerinin bir kısmı yüz yüze, bir kısmı ise çevrimiçi ortamda elde edilmiştir. Araştırma kapsamında 404 anket formundan elde edilen veriler doğrultusunda analizler gerçekleştirilmiştir. Verilere frekans analizi, geçerlilik ve güvenirlik testleri, normallik testi, korelasyon ve regresyon analizleri uygulanmıştır. Katılımcıların Hatay Arkeoloji Müzesi'ne yönelik hizmet kalitesi algıları ile yenilenme düzeyleri arasında pozitif yönlü ve istatistiki açıdan anlamlı bir ilişki olduğu, ayrıca hizmet kalitesi algılarının yenilenme düzeyleri üzerinde pozitif yönde ve istatistiki açıdan anlamlı bir etkisinin bulunduğu tespit edilmiştir.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::625f141369476cc6876710ff60e90a11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021 Turkey Turkishİskenderun Teknik Üniversitesi / Lisansüstü Eğitim Enstitüsü / Turizm ve Otelcilik İşletmeciliği Ana Bilim Dalı Duman, Damla;Duman, Damla;Especially since the 1980s, a rapid change and development process has begun to meet individual needs worldwide. Consumer behavior towards the tourism industry has also been affected by this change. While mass tourism, which was previously associated with sea, sand and sun tourism, was popular, nowadays, experiential tourism types are preferred to meet individualized needs. The increase in the number of trips made to get to know and experience the local cuisine recently is an example of the mentioned change. In this context, increasing the share of developing countries from the global tourism pie depends on their ability to meet changing consumer needs. Within the scope of this thesis, it has been examined whether the destination image has a mediating effect in the relationship between local cuisine elements and destination selection. The research was designed according to the relational screening model, which is one of the general screening models. Questionnaire technique was used to collect data. Due to the fact that the data collection process coincided with the Covid-19 pandemic period, the questionnaires were administered online using the deliberate (decision-judicial) sampling technique. As a result of removing the questionnaires with erroneous and missing data, analyzes were made on the data obtained with 382 questionnaires. Descriptive analysis, explanatory factor analysis (EFA), correlation and regression analyses were applied on the data. As a result of the analysis, it has been determined that the local cuisine elements have a positive and significant effect on the destination image and destination selection, and the destination image has a positive and significant effect on the destination selection. In addition, it has been concluded that the local cuisine elements affect the destination selection indirectly through the destination image. In this context, it can be said that there is a partial mediation effect of the destination image among the variables. The study was concluded by discussing the findings in the light of the literature and making suggestions for tourism industry practitioners and future research. Key Words: Local cuisine, destination image, destination selection, hatay Özellikle 1980lerden itibaren dünya çapında bireysel ihtiyaçların karşılanması adına hızlı bir değişim ve gelişim süreci yaşanmaya başlamıştır. Bu değişimden, turizm endüstrisine yönelik geliştirilen tüketici davranışları da etkilenmiştir. Önceleri deniz, kum, güneş turizmiyle ilişkilendirilen kitle turizmi popülerken, günümüzde daha çok bireyselleştirilmiş ihtiyaçları karşılamaya yönelik deneyimsel turizm türleri tercih edilmektedir. Son zamanlarda yöresel mutfakları tanıma ve deneyimleme amacıyla gerçekleştirilen seyahatlerin artması sözü edilen değişime bir örnektir. Bu bağlamda gelişmekte olan ülkelerin küresel turizm pastasından aldığı payın artırılması, değişen tüketici ihtiyaçlarını karşılama gücüne bağlıdır. Bu tez çalışması kapsamında yöresel mutfak unsurları ile destinasyon seçimi arasındaki ilişkide destinasyon imajının aracılık etkisinin olup olmadığı incelenmiştir. Araştırma genel tarama modellerinden biri olan, ilişkisel tarama modeline göre desenlenmiştir. Verilerin toplanmasında anket tekniğinden yararlanılmıştır. Veri toplama sürecinin Covid-19 pandemi dönemine denk gelmesi nedeniyle anketler, kasti (kararsal-yargısal) örnekleme tekniği kullanılarak çevrimiçi ortamda uygulanmıştır. Hatalı ve eksik verilerin yer aldığı anket formlarının çıkarılması sonucunda 382 anket formuyla elde edilen veriler üzerinde analizler yapılmıştır. Veriler üzerinde, betimleyici analiz, açıklayıcı faktör analizi (AFA), kolerasyon ve regresyon analizleri uygulanmıştır. Yapılan analizler sonucunda yöresel mutfak unsurlarının destinasyon imajı ve destinasyon seçimi üzerinde, destinasyon imajının destinasyon seçimi üzerinde pozitif yönlü anlamlı bir etkisinin olduğu tespit edilmiştir. Ayrıca yöresel mutfak unsurlarının destinasyon seçimini dolaylı olarak destinasyon imajı üzerinden etkilediği sonucuna da erişilmiştir. Bu bağlamda değişkenler arasında destinasyon imajının kısmi aracılık etkisinin olduğu söylenebilir. Çalışma, elde edilen bulguların alanyazın ışığında tartışılmasıyla turizm endüstrisi uygulayıcılarına ve gelecekteki araştırmalara önerilerde bulunularak sonlandırılmıştır. Anahtar Kelimeler: Yöresel mutfak, destinasyon imajı, destinasyon seçimi, hatay
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::63d8041e9259ce0cb3dbaf21bcbc5ce4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Turkey EnglishJournal of Aviation Kasım KİRACI; Veysi ASKER; H. Yusuf GÜNGÖR;Kasım KİRACI; Veysi ASKER; H. Yusuf GÜNGÖR;doi: 10.30518/jav.1032824
The Covid-19 pandemic has caused many industries, especially the air transport industry, to experience a crisis. It is important to analyze the change in the financial performance of global aircraft leasing companies, one of the most important stakeholders of the airline industry during this crisis period. Therefore, this study aims to analyze the financial performance of global aircraft leasing companies in the period from Q1 2018 to Q4 2020. In the study, we analyzed the financial data of 6 global aircraft leasing companies using the CRITIC-based CODAS method. Our findings indicate that some aircraft leasing companies have been ahead of the competition due to the Covid-19 pandemic, while others have fallen behind in the financial performance rankings. Therefore, our results prove that aircraft leasing companies are affected by the covid-19 pandemic. Our analysis on a sectoral basis indicates the relationship between the debt repayment capacity of airlines and the performance of leasing companies.
Journal of Aviation arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2022Data sources: Iskenderun Technical University Institutional RepositoryDicle Üniversitesi Kurumsal Akademik Arşiv SistemiArticle . 2022Data sources: Dicle Üniversitesi Kurumsal Akademik Arşiv Sistemiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30518/jav.1032824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 5 Powered bydescription Publicationkeyboard_double_arrow_right Article 2021 Turkey EnglishÇukurova Üniversitesi Mühendislik Fakültesi Dergisi Genç, Olcay;Genç, Olcay;The goal of this study is, in an unexpected exceptional situation such as Covid-19 outbreak, to demonstrate how the extent of understanding of the situation and its social and economic impact on the construction sector and on its practitioners can be defined and exposed. Hence, to provide insights to the practitioners to prepare the sector and its professionals for the next extraordinary situation. A questionnaire survey is prepared and delivered personally and via the Chamber of Civil Engineers to the civil engineers who work for public or private sectors, and then a comparative analysis is carried out. The exploratory results of the study show that the civil engineers follow precaution rules against Covid-19, they stay home unless compulsory matters, they are highly concerned about global, national and family economies after coronavirus pandemic and, while the majority of the civil engineers somehow continue working during the pandemic, only a very small portion of the private sector companies bankrupt. Bu çalışmanın amacı, Covid-19 salgını gibi beklenmedik bir durumda, durumun anlaşılma derecesinin ve bunun inşaat sektörü ve uygulayıcıları üzerindeki sosyal ve ekonomik etkisinin nasıl tanımlanıp ortaya çıkarılabileceğini göstermektir. Bu nedenle, sektörü ve profesyonellerini bir sonraki olağanüstü duruma hazırlamak için uygulayıcılara öngörü sağlamaktır. Kamu veya özel sektörde çalışan inşaat mühendislerine anket çalışması hazırlanarak bizzat ve İnşaat Mühendisleri Odası aracılığı ile ulaştırılmakta ve ardından karşılaştırmalı bir analiz yapılmaktadır. Çalışmanın sonuçları, inşaat mühendislerinin Covid-19'a karşı önlem kurallarına uyduğunu, zorunlu olmadıkça evde kaldıklarını, koronavirüs pandemisinden sonra küresel, ulusal ve aile ekonomileri konusunda son derece endişelendiklerini ve inşaat mühendislerinin büyük çoğunluğunun bir şekilde pandemi sırasında çalışmaya devam ettiklerini ve özel sektör şirketlerinin sadece çok küçük bir kısmının iflas ettiğini göstermektedir.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::912d611b985a542491ff0b9712175c2a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Turkey EnglishMultidisciplinary Digital Publishing Institute Mustafa Uğur UÇAR; ERSIN OZDEMIR;Mustafa Uğur UÇAR; ERSIN OZDEMIR;With COVID-19, formal education was interrupted in all countries and the importance of distance learning has increased. It is possible to teach any lesson with various communication tools but it is difficult to know how far this lesson reaches to the students. In this study, it is aimed to monitor the students in a classroom or in front of the computer with a camera in real time, recognizing their faces, their head poses, and scoring their distraction to detect student engagement based on their head poses and Eye Aspect Ratios. Distraction was determined by associating the students’ attention with looking at the teacher or the camera in the right direction. The success of the face recognition and head pose estimation was tested by using the UPNA Head Pose Database and, as a result of the conducted tests, the most successful result in face recognition was obtained with the Local Binary Patterns method with a 98.95% recognition rate. In the classification of student engagement as Engaged and Not Engaged, support vector machine gave results with 72.4% accuracy. The developed system will be used to recognize and monitor students in the classroom or in front of the computer, and to determine the course flow autonomously.
Iskenderun Technical... arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2022Data sources: Iskenderun Technical University Institutional RepositoryElectronicsOther literature type . Article . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11091500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2022 Turkey EnglishSpringer Murat UÇAR;Murat UÇAR;The coronavirus disease (COVID-19) is an important public health problem that has spread rapidly around the world and has caused the death of millions of people. Therefore, studies to determine the factors affecting the disease, to perform preventive actions and to find an effective treatment are at the forefront. In this study, a deep learning and segmentation-based approach is proposed for the detection of COVID-19 disease from computed tomography images. The proposed model was created by modifying the encoder part of the U-Net segmentation model. In the encoder part, VGG16, ResNet101, DenseNet121, InceptionV3 and EfficientNetB5 deep learning models were used, respectively. Then, the results obtained with each modified U-Net model were combined with the majority vote principle and a final result was reached. As a result of the experimental tests, the proposed model obtained 85.03% Dice score, 89.13% sensitivity and 99.38% specificity on the COVID-19 segmentation test dataset. The results obtained in the study show that the proposed model will especially benefit clinicians in terms of time and cost.
Iskenderun Technical... arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2022Data sources: Iskenderun Technical University Institutional RepositoryNeural Computing and ApplicationsArticle . 2022License: https://www.springer.com/tdmData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00521-022-07653-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020 TurkeyAtaberk Donmez; Ahmet Sureyya Rifaioglu; Aybar C. Acar; Tunca Doğan; Rengul Cetin-Atalay; Volkan Atalay;pmc: PMC7454317 , PMC7992908
Abstract Summary iBioProVis is an interactive tool for visual analysis of the compound bioactivity space in the context of target proteins, drugs and drug candidate compounds. iBioProVis tool takes target protein identifiers and, optionally, compound SMILES as input, and uses the state-of-the-art non-linear dimensionality reduction method t-Distributed Stochastic Neighbor Embedding (t-SNE) to plot the distribution of compounds embedded in a 2D map, based on the similarity of structural properties of compounds and in the context of compounds’ cognate targets. Similar compounds, which are embedded to proximate points on the 2D map, may bind the same or similar target proteins. Thus, iBioProVis can be used to easily observe the structural distribution of one or two target proteins’ known ligands on the 2D compound space, and to infer new binders to the same protein, or to infer new potential target(s) for a compound of interest, based on this distribution. Principal component analysis (PCA) projection of the input compounds is also provided, Hence the user can interactively observe the same compound or a group of selected compounds which is projected by both PCA and embedded by t-SNE. iBioProVis also provides detailed information about drugs and drug candidate compounds through cross-references to widely used and well-known databases, in the form of linked table views. Two use-case studies were demonstrated, one being on angiotensin-converting enzyme 2 (ACE2) protein which is Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein receptor. ACE2 binding compounds and seven antiviral drugs were closely embedded in which two of them have been under clinical trial for Coronavirus disease 19 (COVID-19). Availability and implementation iBioProVis and its carefully filtered dataset are available at https://ibpv.kansil.org/ for public use. Contact vatalay@metu.edu.tr Supplementary information Supplementary data are available at Bioinformatics online.
Bioinformatics arrow_drop_down Iskenderun Technical University Institutional RepositoryArticle . 2020Data sources: Iskenderun Technical University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/bioinformatics/btaa666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
description Publicationkeyboard_double_arrow_right Article 2021 Turkey EnglishMehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Kiracı, Kasım;Kiracı, Kasım;The aim of this study is to investigate which financial variables increases or decreases the risk of the bankruptcy of airlines during periods of crisis when there is a possibility of financial distress. In this study, financial variables that affect financial distress in airlines and the possibility of bankruptcy were analyzed. In the framework of the study, the financial data from 35 airlines were examined. We employed the Altman (1968) Z-score, Springate (1978) S-score and Zmijewski (1984) J-score financial distress prediction models. The findings indicate that in times of crisis, when the probability of financial distress and bankruptcy increases (such as with Covid-19), leverage level, asset structure, firm size, firm profitability and liquidity ratio have a significant effect on an airline’s probability of bankruptcy score. Bu çalışmanın amacı, finansal sıkıntı olasılığının olduğu kriz dönemlerinde, havayollarının iflas riskini artıran veya azaltan finansal değişkenlerin araştırılmasıdır. Bu çalışmada, havayollarında finansal sıkıntıyı veya iflas olasılığını etkileyen finansal değişkenler incelenmiştir. Çalışma kapsamında 35 havayolunun finansal verileri incelenmiştir. Altman (1968) Z-skor, Springate (1978) S-skor ve Zmijewski (1984) J-skor finansal sıkıntı tahmin modellerinden yararlanılmıştır. Bulgular, kriz zamanlarında diğer bir ifadeyle finansal sıkıntı ve iflas olasılığının arttığı durumlarda (Covid-19 gibi), kaldıraç seviyesi, varlık yapısı, firma büyüklüğü, firma karlılığı ve likidite oranının havayolu finansal sıkıntı veya iflas olasılığını önemli ölçüde etkilediğini göstermektedir.
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______4723::8df9d20d6dbaa33b7dcc954a5f6f1559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu