Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
20 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Closed Access
  • Restricted
  • Research data
  • Research software
  • Other research products
  • English
  • Digitální knihovna VUT
  • North American Studies

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Balko, Marek;

    This thesis focuses on utilizing image data of tree trunk damage to train a classifier for recognizing species of tree pests that caused this damage. The classifier is designed as a convolutional neural network. To successfully train the model, a preprocessing step - the sub-image generator - was employed before the classifier. This generator creates training data of suitable dimensions by cropping from the original data. The resulting data retains important details for network training. Two methods for generating training sub-images were proposed for the sub-image generator - the Grid division method and the Elliptic division method. Both of these methods can be successfully used to train the classifier for tree pest recognition based on image data of tree damage with comparable model accuracy. The Elliptic division method is more flexible and less time-consuming for preprocessing training data. Tato diplomová práce se věnuje využití obrazových dat poškození kmene stromu k natrénování klasifikátoru pro rozpoznávání druhů škůdců stromů, které toto poškození způsobili. Klasifikátor je navrhnut jako konvoluční neuronová síť. Pro úspěšné natrénování modelu byl klasifikátoru předřazen preprocesingový krok – sub-image generátor. Tento generátor vytváří tréninková data o vhodných rozměrech pomocí výřezů z původních dat. Takto vzniklá data zachovávají důležité detaily pro trénování sítě. Pro sub-image generátor byly navrženy dvě metody vytváření trénovacích pod-obrazů – Grid division method a Elliptic division method. Obě tyto metody lze úspěšně použít pro natrénování klasifikátoru škůdců stromů na základě obrazových dat poškození stromu se srovnatelnou přesností modelu. Metoda Elliptic division je flexibilnější a méně časově náročná na preprocesing trénovacích dat. A

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Smatana, Stanislav;

    Hlavním cílem této práce bylo navrhnout a vytvořit systém sledování osob s aplikací v oboru bezpečnosti nebo pro analýzu chování zákazníka v obchodě. Systém byl úspěšně implementován pomocí metod KLT trekování, AdaBoost klasifikátoru a datové asociace pomocí Markovských řetězců a metody Monte Carlo. Implementace umožňuje analýzu pohybu lidí ve vnitřních i vnějších prostorech. The main goal of this thesis is to develop multi-target tracking system for use in field of security surveillance or for customer behavior analysis. The system was successfully implemented using KLT tracking, AdaBoost classifier and Markov Chain Monte Carlo data association. It is able to perform analysis of motion of people in both outdoor and indoor environment. C

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Holková, Natália;

    This thesis aims to implement a method of detecting the horizon line in images using deep learning to prevent any constraints on input data. A training dataset is created by downloaded images from large metropolitan cities around the world using the Google Street View service. Several popular architectures for convolutional neural networks are chosen, and their performance is evaluated on existing benchmark datasets. Cieľom tejto práce je naimplementovať metódu detekovania horizontu vo fotografii pomocou hlbokého učenia, aby sa zabránilo obmedzeniam pre vstupné dáta. Trénovací dataset bol vytvorený sťahovaním obrázkov z miest z celého sveta pomocou služby Google Street View. Bolo vybratých niekoľko populárnych architektúr pre konvolučné neurónové siete a po natrénovaní boli vyhodnotené na existujúcich testovacích datasetoch. C

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lorinc, Marián;

    Convolutional Neural Networks (CNNs) have revolutionised computer vision field since their introduction. By replacing weights with convolution filters containing trainable weights, CNNs significantly reduced memory usage. However, this reduction came at the cost of increased computational resource requirements, as convolution operations are more computation intensive. Despite this, memory usage remains more energy-intensive than computation. This thesis explores whether it is possible to avoid loading weights from memory and instead functionally calculate them, thereby saving energy. To test this hypothesis, a novel weight compression algorithm was developed using Cartesian Genetic Programming. This algorithm searches for the most optimal weight compression function, aiming to enhance energy efficiency without compromising the functionality of the neural network. Experiments conducted on the LeNet-5 and MobileNetV2 architectures demonstrated that the algorithm could effectively reduce energy consumption while maintaining high model accuracy. The results showed that certain layers could benefit from weight computation, validating the potential for energy-efficient neural network implementations. Konvolučné neurónové siete (CNN) od svojho vynájdenia zrevolucionizovali spôsob, akým sa realizujú úlohy z odvetvia počítačového videnia. Vynález CNN viedol k zníženiu pamäťovej náročnosti, keďže váhy boli nahradené konvolučnými filtrami obsahujúcimi menej trénovateľných váh. Avšak, toto zníženie bolo dosiahnuté na úkor zvýšenia požiadaviek na výpočtový výkon, ktorý je naviazaný na výpočet konvolúcie. Táto práca skúma hypotézu, či je možné sa vyhnúť načítavaniu váh a miesto toho ich vypočítať, čím sa ušetrí energia. Na otestovanie tejto hypotézy bol vyvinutý nový algoritmus kompresie váh využívajúci Kartézske genetické programovanie. Tento algoritmus hľadá najoptimálnejšiu funkciu kompresie váh s cieľom zvýšiť energetickú účinnosť. Experimenty vykonané na architektúrach LeNet-5 a MobileNetV2 ukázali, že algoritmus dokáže efektívne znížiť spotrebu energie pri zachovaní vysokej presnosti modelu. Výsledky ukázali, že určité vrstvy je možné doplniť vypočítanými váhami, čo potvrdzuje potenciál pre energeticky efektívne neurónové siete. B

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ruman, Róbert;

    This thesis is devoted to the mitigation of multiple types of DoS attacks. Our aim was to create a custom apache module that is able to mitigate flood attacks as well as logical attacks. The module was created in C language using VS Code. After creating the module we ran multiple tests to gather data in order to be able to compare our module to already existing apache modules. Comparing the test result we concluded that our module is able to mitigate both types of attacks. The results of the tests are visualized using graphs in the appendix. Táto práca sa venuje mitigácii viacerých typov útokov DoS. Naším cieľom bolo vytvoriť vlastný modul apache, ktorý dokáže zmierniť útoky typu flood, ako aj logické útoky. Modul bol vytvorený v jazyku C pomocou programu VS Code. Po vytvorení modulu sme vykonali viacero testov na získanie údajov, aby sme mohli náš modul porovnať s už existujúcimi modulmi apache. Porovnaním výsledkov testov sme dospeli k záveru, že náš modul dokáže zmierniť oba typy útokov. Výsledky testov sú vizualizované pomocou grafov v prílohe. E

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pijáček, Štěpán;

    This thesis is researching workable solutions to the problem of classification of thorax disease on chest x-ray images using artificial intelligence. For a better understanding of the problem, the first chapters explain the basic convolutional neural network and its advantages and disadvantages. Based on these first explanations, two neural networks which are expanding on the concept of the convolutional neural network are chosen. Those are capsulated network and residual network both explained further in their respective sections with their advantages and disadvantages. Residual network and Capsulated network are implemented using programming language python and framework TensorFlow with Keras library, both with their respective chapters. At the end of this thesis, you can find results and conclusion. Tato práce se zabývá výzkumem použitelných řešení pro problém klasifikace onemocnění hrudníku na rentgenových snímcích hrudníku pomocí umělé inteligence. Pro lepší pochopení problému jsou v prvních kapitolách vysvětleny základní konvoluční neuronové sítě a jejich výhody a nevýhody. Na základě těchto prvních vysvětlení jsou vybrány dvě neuronové sítě, které rozšiřují koncept konvoluční neuronové sítě. Těmito sítěmi jsou kapslová síť a reziduální síť, obě jsou dále vysvětleny v příslušných kapitolách s jejich výhodami a nevýhodami. Reziduální síť a kapslová síť jsou poté implementovány pomocí programovacího jazyka python a frameworku TensorFlow s knihovnou Keras, obě se svými příslušnými kapitolami. Na konci práce jsou uvedeny výsledky a závěr. C

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vengerová, Veronika;

    This thesis deals with the task of recognizing emotions from electroencephalogram (EEG). Two models were trained for binary classification of emotions, where one classifies neutral emotion or fear and the other classifies happiness or sadness. During the work on this thesis many different architectures were tried, and the best result was obtained using a model with two branches of CNN-LSTM connected before the output layer. The resulting accuracy was 87.309% for sad-happy classification and 84.865% for neutral-fear emotion. Táto práca sa zaoberá rozoznávaním emócií z elektroencefalogramu (EEG). Dva modely na binárnu klasifikáciu emócií, kde jeden model klasifikuje neutrálnu emóciu alebo strach a druhý šťastie a smútok. Počas práce boli vyskúšané mnohé rôzne architektúry, pričom najlepšie výsledky boli dosiahnuté modelom pozostávajúcim z dvoch vetiev KNN-LSTM spojenými pred výstupnou vrstvou. Výsledná presnosť bola 87.309% na klasifikáciu šťastia a smútku a 84.865% na klasifikáciu neutrálnej emócie a strachu. A

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lečbych, Michal;

    Perceptive systems in autonomous cars are a heavily researched topic these days and an essential part of making fully autonomous vehicles possible. First, we make a short summary of the development of such a system, then we explain different approaches to make these systems possible, and we focus on object detection, as this will be the main part of our own created perceptive system. A new model for object detection is implemented, and some additional parts like distance estimation and lane detection are added. Percepční systémy v autonomních vozech jsou v dnešní době intenzivně zkoumaným tématem a nezbytnou součástí potřebnou k vytvoření plně autonomních vozidel. Nejprve, stručně shrneme vývoj takových systémů, vysvětlíme si různé přístupy potřebné k vytvoření percepčních systémů a zaměříme se na detekci objektů, protože to bude naše hlavní část pro námi vytvořená systém. Nový model pro detekci objektů je , spolu s několika dalšími částmi jako odhad vzdálenosti a detekce jízdních pruhů. C

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Soldán, Michal;

    This bachelor's thesis deals with the general introduction into the projects that are needed for the realization of smart cities and technologies implemented in them. In further detail it concentrates more upon the projects that take place in different parts of the world, mainly in Japan and Hawaii. It deals, in particular, with technologically advanced energy solutions, smart grid testing projects which are essential for the smart city itself and implementation of electric vehicles into the grid. Also some of the European smart city projects are mentioned, where the developed technology is tested in real-life cooperation. Tato bakalářská práce se zabývá obecným úvodem do dílčích projektů, které jsou důležité pro realizaci chytrých měst i v nich používaných technologií. Podrobněji tato práce přibližuje projekty v různých zemích, hlavně však v Japonsku a na Havaji. Konkrétně shrnuje technologicky pokročilé energetické řešení a testovací projekty chytré sítě, které jsou základním kamenem pro budoucí chytrá města i efektivní využití elektomobilů. Práce také zmiňuje projekty chytrých měst v Evropě, kde je synchronizace vyvinutých technologií testována v praxi. D

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zakarovský, Matúš;

    Hlavným cieľom práce bolo vytvorenie softvérového riešenia založeného na neurónových sieťach, pomocou ktorého bolo možné detegovať človeka a následne ho nasledovať. Tento výsledok bol dosiahnutý splnením jednotlivých bodov zadania tejto práce. V prvej časti práce je popísaný použitý hardvér, softvérové knižnice a rozhrania pre programovanie aplikácií (API), ako aj robotická platforma dodaná skupinou robotiky a umelej inteligencie ústavu automatizácie a meracej techniky Vysokého Učenia Technického v Brne, na ktorej bol výsledný robot postavený. Následne bola spracovaná rešerš viacerých typov neurónových sietí na detekciu osôb. Podrobne boli popísané štyri detektory. Niektoré z nich boli neskôr testované na klasickom počítači alebo na počítači NVIDIA Jetson Nano. V ďalšom kroku bolo vytvorené softvérové riešenie tvorené piatimi programmi, pomocou ktorého bolo dosiahnuté ciele ako rozpoznanie osoby pomocou neurónovej siete ped-100, určenie reálnej vzdialenosti vzhľadom k robotu pomocou monokulárnej kamery a riadenie roboty k úspešnému dosiahnutiu cieľa. Výstupom tejto práce je robotická platforma umožnujúca detekciu a nasledovanie osoby využiteľné v praxi. The main goal of this thesis was to create a software solution based on a neural network to enable detection of a person and its subsequent following. This was achieved via completion of the points of the assignment. First, a hardware solution and used libraries and application programming interfaces were described as well as the robotic platform supplied by the Robotics and AI group of BUT Department of Control and Instrumentation upon which the robot was built on. Next, a research of various neural networks used for person detection was conducted. Four detectors were described in detail. Some of them were tested on either a PC or a NVIDIA Jetson Nano computer. Afterwards, a software solution consisting of five programs was created to achieve goals such as, detection of the person using ped-100 neural network, real-world position with reference to the robot estimation using monocular camera and robot control to successfully follow a target. The output of this thesis is a robotic platform able to detect and follow a person that can be used in a real-world applications. B

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
20 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Balko, Marek;

    This thesis focuses on utilizing image data of tree trunk damage to train a classifier for recognizing species of tree pests that caused this damage. The classifier is designed as a convolutional neural network. To successfully train the model, a preprocessing step - the sub-image generator - was employed before the classifier. This generator creates training data of suitable dimensions by cropping from the original data. The resulting data retains important details for network training. Two methods for generating training sub-images were proposed for the sub-image generator - the Grid division method and the Elliptic division method. Both of these methods can be successfully used to train the classifier for tree pest recognition based on image data of tree damage with comparable model accuracy. The Elliptic division method is more flexible and less time-consuming for preprocessing training data. Tato diplomová práce se věnuje využití obrazových dat poškození kmene stromu k natrénování klasifikátoru pro rozpoznávání druhů škůdců stromů, které toto poškození způsobili. Klasifikátor je navrhnut jako konvoluční neuronová síť. Pro úspěšné natrénování modelu byl klasifikátoru předřazen preprocesingový krok – sub-image generátor. Tento generátor vytváří tréninková data o vhodných rozměrech pomocí výřezů z původních dat. Takto vzniklá data zachovávají důležité detaily pro trénování sítě. Pro sub-image generátor byly navrženy dvě metody vytváření trénovacích pod-obrazů – Grid division method a Elliptic division method. Obě tyto metody lze úspěšně použít pro natrénování klasifikátoru škůdců stromů na základě obrazových dat poškození stromu se srovnatelnou přesností modelu. Metoda Elliptic division je flexibilnější a méně časově náročná na preprocesing trénovacích dat. A

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Smatana, Stanislav;

    Hlavním cílem této práce bylo navrhnout a vytvořit systém sledování osob s aplikací v oboru bezpečnosti nebo pro analýzu chování zákazníka v obchodě. Systém byl úspěšně implementován pomocí metod KLT trekování, AdaBoost klasifikátoru a datové asociace pomocí Markovských řetězců a metody Monte Carlo. Implementace umožňuje analýzu pohybu lidí ve vnitřních i vnějších prostorech. The main goal of this thesis is to develop multi-target tracking system for use in field of security surveillance or for customer behavior analysis. The system was successfully implemented using KLT tracking, AdaBoost classifier and Markov Chain Monte Carlo data association. It is able to perform analysis of motion of people in both outdoor and indoor environment. C

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Holková, Natália;

    This thesis aims to implement a method of detecting the horizon line in images using deep learning to prevent any constraints on input data. A training dataset is created by downloaded images from large metropolitan cities around the world using the Google Street View service. Several popular architectures for convolutional neural networks are chosen, and their performance is evaluated on existing benchmark datasets. Cieľom tejto práce je naimplementovať metódu detekovania horizontu vo fotografii pomocou hlbokého učenia, aby sa zabránilo obmedzeniam pre vstupné dáta. Trénovací dataset bol vytvorený sťahovaním obrázkov z miest z celého sveta pomocou služby Google Street View. Bolo vybratých niekoľko populárnych architektúr pre konvolučné neurónové siete a po natrénovaní boli vyhodnotené na existujúcich testovacích datasetoch. C

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lorinc, Marián;

    Convolutional Neural Networks (CNNs) have revolutionised computer vision field since their introduction. By replacing weights with convolution filters containing trainable weights, CNNs significantly reduced memory usage. However, this reduction came at the cost of increased computational resource requirements, as convolution operations are more computation intensive. Despite this, memory usage remains more energy-intensive than computation. This thesis explores whether it is possible to avoid loading weights from memory and instead functionally calculate them, thereby saving energy. To test this hypothesis, a novel weight compression algorithm was developed using Cartesian Genetic Programming. This algorithm searches for the most optimal weight compression function, aiming to enhance energy efficiency without compromising the functionality of the neural network. Experiments conducted on the LeNet-5 and MobileNetV2 architectures demonstrated that the algorithm could effectively reduce energy consumption while maintaining high model accuracy. The results showed that certain layers could benefit from weight computation, validating the potential for energy-efficient neural network implementations. Konvolučné neurónové siete (CNN) od svojho vynájdenia zrevolucionizovali spôsob, akým sa realizujú úlohy z odvetvia počítačového videnia. Vynález CNN viedol k zníženiu pamäťovej náročnosti, keďže váhy boli nahradené konvolučnými filtrami obsahujúcimi menej trénovateľných váh. Avšak, toto zníženie bolo dosiahnuté na úkor zvýšenia požiadaviek na výpočtový výkon, ktorý je naviazaný na výpočet konvolúcie. Táto práca skúma hypotézu, či je možné sa vyhnúť načítavaniu váh a miesto toho ich vypočítať, čím sa ušetrí energia. Na otestovanie tejto hypotézy bol vyvinutý nový algoritmus kompresie váh využívajúci Kartézske genetické programovanie. Tento algoritmus hľadá najoptimálnejšiu funkciu kompresie váh s cieľom zvýšiť energetickú účinnosť. Experimenty vykonané na architektúrach LeNet-5 a MobileNetV2 ukázali, že algoritmus dokáže efektívne znížiť spotrebu energie pri zachovaní vysokej presnosti modelu. Výsledky ukázali, že určité vrstvy je možné doplniť vypočítanými váhami, čo potvrdzuje potenciál pre energeticky efektívne neurónové siete. B

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ruman, Róbert;

    This thesis is devoted to the mitigation of multiple types of DoS attacks. Our aim was to create a custom apache module that is able to mitigate flood attacks as well as logical attacks. The module was created in C language using VS Code. After creating the module we ran multiple tests to gather data in order to be able to compare our module to already existing apache modules. Comparing the test result we concluded that our module is able to mitigate both types of attacks. The results of the tests are visualized using graphs in the appendix. Táto práca sa venuje mitigácii viacerých typov útokov DoS. Naším cieľom bolo vytvoriť vlastný modul apache, ktorý dokáže zmierniť útoky typu flood, ako aj logické útoky. Modul bol vytvorený v jazyku C pomocou programu VS Code. Po vytvorení modulu sme vykonali viacero testov na získanie údajov, aby sme mohli náš modul porovnať s už existujúcimi modulmi apache. Porovnaním výsledkov testov sme dospeli k záveru, že náš modul dokáže zmierniť oba typy útokov. Výsledky testov sú vizualizované pomocou grafov v prílohe. E

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pijáček, Štěpán;

    This thesis is researching workable solutions to the problem of classification of thorax disease on chest x-ray images using artificial intelligence. For a better understanding of the problem, the first chapters explain the basic convolutional neural network and its advantages and disadvantages. Based on these first explanations, two neural networks which are expanding on the concept of the convolutional neural network are chosen. Those are capsulated network and residual network both explained further in their respective sections with their advantages and disadvantages. Residual network and Capsulated network are implemented using programming language python and framework TensorFlow with Keras library, both with their respective chapters. At the end of this thesis, you can find results and conclusion. Tato práce se zabývá výzkumem použitelných řešení pro problém klasifikace onemocnění hrudníku na rentgenových snímcích hrudníku pomocí umělé inteligence. Pro lepší pochopení problému jsou v prvních kapitolách vysvětleny základní konvoluční neuronové sítě a jejich výhody a nevýhody. Na základě těchto prvních vysvětlení jsou vybrány dvě neuronové sítě, které rozšiřují koncept konvoluční neuronové sítě. Těmito sítěmi jsou kapslová síť a reziduální síť, obě jsou dále vysvětleny v příslušných kapitolách s jejich výhodami a nevýhodami. Reziduální síť a kapslová síť jsou poté implementovány pomocí programovacího jazyka python a frameworku TensorFlow s knihovnou Keras, obě se svými příslušnými kapitolami. Na konci práce jsou uvedeny výsledky a závěr. C

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vengerová, Veronika;

    This thesis deals with the task of recognizing emotions from electroencephalogram (EEG). Two models were trained for binary classification of emotions, where one classifies neutral emotion or fear and the other classifies happiness or sadness. During the work on this thesis many different architectures were tried, and the best result was obtained using a model with two branches of CNN-LSTM connected before the output layer. The resulting accuracy was 87.309% for sad-happy classification and 84.865% for neutral-fear emotion. Táto práca sa zaoberá rozoznávaním emócií z elektroencefalogramu (EEG). Dva modely na binárnu klasifikáciu emócií, kde jeden model klasifikuje neutrálnu emóciu alebo strach a druhý šťastie a smútok. Počas práce boli vyskúšané mnohé rôzne architektúry, pričom najlepšie výsledky boli dosiahnuté modelom pozostávajúcim z dvoch vetiev KNN-LSTM spojenými pred výstupnou vrstvou. Výsledná presnosť bola 87.309% na klasifikáciu šťastia a smútku a 84.865% na klasifikáciu neutrálnej emócie a strachu. A

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim