Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • 2015-2024
  • Closed Access
  • Restricted
  • Research data
  • Other research products
  • Canadian Institutes of Health Resea...
  • English
  • ZENODO

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Santori; Morena; Hill; Campolongo;

    Background: Cannabinoids induce biphasic effects on memory depending on stress levels. We previously demonstrated that different stress intensities, experienced soon after encoding, impaired rat short-term recognition memory in a time-of-day-dependent manner, and that boosting endocannabinoid anandamide (AEA) levels restored memory performance. Here, we examined if two different stress intensities and time-of-day alter hippocampal endocannabinoid tone, and whether these changes modulate short-term memory. Methods: Male Sprague-Dawley rats were subjected to an object recognition task and exposed, at two different times of the day (i.e., morning or afternoon), to low or high stress conditions, immediately after encoding. Memory retention was assessed 1 hr later. Hippocampal AEA and 2-arachidonoyl glycerol (2-AG) content and the activity of their primary degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), were measured soon after testing. Results: Consistent with our previous findings, low stress impaired 1-hr memory performance only in the morning, whereas exposure to high stress impaired memory independently of testing time. Stress exposure decreased AEA levels independently of memory alterations. Interestingly, exposure to high stress decreased 2-AG content and, accordingly, increased MAGL activity, selectively in the afternoon. Thus, to further evaluate 2-AG's role in the modulation of short-term recognition memory, rats were given bilateral intra-hippocampal injections of the 2-AG hydrolysis inhibitor KML29 immediately after training, then subjected to low or high stress conditions and tested 1 hr later. Conclusions: KML29 abolished the time-of-day-dependent impairing effects of stress on short-term memory, ameliorating short-term recognition memory performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2020
    Data sources: Datacite
    ZENODO
    Dataset . 2020
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2020
      Data sources: Datacite
      ZENODO
      Dataset . 2020
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Santori; Morena; Hill; Campolongo;

    Background: Cannabinoids induce biphasic effects on memory depending on stress levels. We previously demonstrated that different stress intensities, experienced soon after encoding, impaired rat short-term recognition memory in a time-of-day-dependent manner, and that boosting endocannabinoid anandamide (AEA) levels restored memory performance. Here, we examined if two different stress intensities and time-of-day alter hippocampal endocannabinoid tone, and whether these changes modulate short-term memory. Methods: Male Sprague-Dawley rats were subjected to an object recognition task and exposed, at two different times of the day (i.e., morning or afternoon), to low or high stress conditions, immediately after encoding. Memory retention was assessed 1 hr later. Hippocampal AEA and 2-arachidonoyl glycerol (2-AG) content and the activity of their primary degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), were measured soon after testing. Results: Consistent with our previous findings, low stress impaired 1-hr memory performance only in the morning, whereas exposure to high stress impaired memory independently of testing time. Stress exposure decreased AEA levels independently of memory alterations. Interestingly, exposure to high stress decreased 2-AG content and, accordingly, increased MAGL activity, selectively in the afternoon. Thus, to further evaluate 2-AG's role in the modulation of short-term recognition memory, rats were given bilateral intra-hippocampal injections of the 2-AG hydrolysis inhibitor KML29 immediately after training, then subjected to low or high stress conditions and tested 1 hr later. Conclusions: KML29 abolished the time-of-day-dependent impairing effects of stress on short-term memory, ameliorating short-term recognition memory performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2020
    Data sources: Datacite
    ZENODO
    Dataset . 2020
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2020
      Data sources: Datacite
      ZENODO
      Dataset . 2020
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph