Loading
description Publication2022MDPI AG Authors: Dominik Gottron; Andreas Henk;Dominik Gottron; Andreas Henk;A numerical characterization of a fractured rock mass and its mechanical behavior using a discontinuum approach was carried out utilizing lattice-spring-based synthetic rock mass (LS-SRM) models. First, LS-SRM models on a laboratory scale were created to reproduce standard rock mechanical tests on Triassic sandstone samples from a quarry in Germany. Subsequently, the intact rock properties were upscaled to an element volume representative for geotechnical applications, recalibrated and combined with a Discrete Fracture Network (DFN) model. The resulting fractured rock mass properties are compared to predictions from empirical relationships based on rock mass classification schemes and the DFN-Oda-Geomechanics approach. Modeling results reveal a significant reduction in the strength of the fractured rock mass compared to the intact rock, showing a high agreement with empirically calculated values. Results for the deformation modulus reveal a significant reduction induced by the fracture network and a good agreement compared to the results obtained by other approaches. It is shown that the LS-SRM allows analyzing the complex mechanical behavior during failure of rock masses, including crack initiation, propagation and coalescence. The resulting rock mass properties are key parameters for a wide range of geotechnical applications and can be used for large-scale numerical modeling as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12090343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12090343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 SloveniaMDPI AG Authors: Nejc Bezak; Jošt Sodnik; Matjaž Mikoš;Nejc Bezak; Jošt Sodnik; Matjaž Mikoš;handle: 20.500.12556/RUL-131996
Debris flows with different magnitudes can have a large impact on debris fan characteristics such as height or slope. Moreover, knowledge about the impact of random sequences of debris flows of different magnitudes on debris fan properties is sparse in the literature and can be improved using numerical simulations of debris fan formation. Therefore, in this paper we present the results of numerical simulations wherein we investigated the impact of a random sequence of debris flows on torrential fan formation, where the total volume of transported debris was kept constant, but different rheological properties were used. Overall, 62 debris flow events with different magnitudes from 100 m3 to 20,000 m3 were selected, and the total volume was approximately 225,000 m3. The sequence of these debris flows was randomly generated, and selected debris fan characteristics after the 62 events were compared. For modeling purposes, we applied the Rapid Mass Movement Simulations (RAMMS) software and its debris flow module (RAMMS-DF). The modeling was carried out using (a) real fan topography from an alpine environment (i.e., an actual debris fan in north-west (NW) Slovenia formed by the Suhelj torrent) and (b) an artificial surface with a constant slope. Several RAMMS model parameters were tested. The simulation results confirm that the random sequence of debris flow events has only some minor effects on the fan formation (e.g., slope, maximum height), even when changing debris flow rheological properties in a wide range. After the 62 events, independent of the selected sequence of debris flows, the final fan characteristics were not significantly different from each other. Mann&ndash Whitney (MW) tests and t-tests were used for this purpose, and the selected significance level was 0.05. Moreover, this conclusion applies for artificial and real terrain and for a wide range of tested RAMMS model rheological parameters. Further testing of the RAMMS-DF model in real situations is proposed in order to better understand its applicability and limitations under real conditions for debris flow hazard assessment or the planning of mitigation measures.
Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Repository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9020064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Repository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9020064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 GermanyMDPI AG Authors: M. Meyer; Ingo Pfeffer; Carsten Jürgens;M. Meyer; Ingo Pfeffer; Carsten Jürgens;While Light Detection and Ranging (LiDAR) revolutionized archaeological prospection and different visualizations were developed, an automated detection of cultural heritage still poses a significant challenge. Therefore, geographers and archaeologists from Westphalia, Germany are developing automated workflows for classifying field monuments from special terrain models. For this project, a combination of GIS, Python, and Object-Based Image Analysis (OBIA) is used. It focuses on three common types of monuments: Ridge and Furrow areas, Burial Mounds, and Motte-and-Bailey castles. The latter two are not classified binary, but in multiple classes, depending on their degree of erosion. This simplifies interpretation by highlighting the most interesting structures without losing the others. The results confirm that OBIA is suitable for detecting field monuments with hit rates of ~90%. A drawback is its dependency on the use of special terrain models like the Difference Map. Further limitations arise in complex terrain situations.
Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Dokumentenrepositorium der RUB / RUB-RepositoryArticle . 2019Data sources: Dokumentenrepositorium der RUB / RUB-Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9030109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Dokumentenrepositorium der RUB / RUB-RepositoryArticle . 2019Data sources: Dokumentenrepositorium der RUB / RUB-Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9030109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018MDPI AG Authors: Elizabeth M. Morris;Elizabeth M. Morris;An empirical model for the densification of dry snow has been calibrated using strain-rate data from Pine Island Glacier basin, Antarctica. The model provides for a smooth transition between Stage 1 and Stage 2 densification, and leads to an analytical expression for density as a function of depth. It introduces two new parameters with a simple physical basis: transition density &rho 3 and M = 7 for the region. Using these values, the transition model produces better simulations of snow profiles from Pine Island Glacier basin than the well-established Herron and Langway and Ligtenberg models, both of which postulate abrupt transition. Simulation of density profiles from other sites using M = 7 produces the best values of &rho 3 for a low accumulation site, suggesting that transition density may vary with climatic conditions. The variation of bubble close-off depth and depth-integrated porosity with mean annual accumulation predicted by the transition model is similar to that predicted by the Simonsen model tuned for Greenland. T and a scaling factor, M, which controls the extent of the transition zone. The standard (Herron and Langway) parameterization is used for strain rates away from the transition zone. Calibration, though tentative, produces best parameter values of &rho 3 for a high accumulation site and 530 kg m &minus T = 580 kg m &minus T = 550 kg m &minus
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021MDPI AG Authors: Apoorv Jyoti; Ralf Haese;Apoorv Jyoti; Ralf Haese;Micro-computed tomography (micro-CT) is increasingly utilized to image the pore network and to derive petrophysical properties in combination with modelling software. The effect of micro-CT image resolution and size on the accuracy of the derived petrophysical properties is addressed in this study using a relatively homogenous sandstone and a heterogenous, highly porous bioclastic limestone. Standard laboratory procedures including NMR (nuclear magnetic resonance) analysis, micro-CT analysis at different image resolutions and sizes and pore-scale flow simulations were used to determine and compare petrophysical properties. NMR-derived pore-size distribution (PSD) was comparable to the micro-CT-derived PSD at a resolution of 7 µm for both the rock types. Porosity was higher using the water saturation method as compared to the NMR method in both rocks. The resolution did not show a significant effect on the porosity of the homogeneous sandstone, but porosity in the heterogeneous limestone varies depending on the location of the sub-sample. The transport regime in the sandstone was derived by simulations and changed with the resolution of the micro-CT image. The transport regime in the sandstone was advection-dominated at higher image resolution and diffusion-dominated when using a lower image resolution. In contrast, advection was the dominant transport regime for the limestone based on simulations using higher and lower image resolutions. Simulation-derived permeability for a 400 Voxel3 image at 7 µm resolution in the Berea sandstone matched laboratory results, although local heterogeneity within the rock plays an integral role in the permeability estimation within the sub-sampled images. The simulation-derived permeability was highly variable in the Mount Gambier limestone depending on the image size and resolution with the closest value to a laboratory result simulated with an image resolution of 2.5 µm and a size of 300 Voxel3. Overall, the study demonstrates the need to decide on micro-CT parameters depending on the type of petrophysical property of interest and the degree of heterogeneity within the rock types.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 GermanyMDPI AG Authors: Julian Hofmann; Holger Schüttrumpf;Julian Hofmann; Holger Schüttrumpf;Geosciences 9(3), 127 (1-22) (2019). doi:10.3390/geosciences9030127 Published by MDPI, Basel
Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9030127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publikationsserver d... arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9030127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyMDPI AG Lucilla Capotondi; Sergio Bonomo; Andrea Graiani; Michele Innangi; Sara Innangi; Federico Giglio; Mariangela Ravaioli; Luciana Ferraro;Benthic foraminiferal assemblages have been studied at 11 sediment surface samples located in the Neretva Channel covering the delta habitat and the adjacent open sea areas. The major objective of the investigation was to explore the main environmental parameters affecting the benthic foraminifera compositional changes. To this end, a statistical approach was applied that integrates micropaleontological data with physical, geochemical and sedimentological parameters (total organic carbon and grain size). Statistical analyses identified four distinct groups (cluster A1, A2, B1, B2) corresponding to different environmental settings. Cluster A1 groups samples under Neretva river influence and is characterized by Aubignyna perlucida, Nonionella turgida, Eggerelloides scaber and Rectuvigerina sp.; species able to live in organic-matter-rich sediments and in a wide range of oxygen content. Cluster A2 includes samples distant from the fluvial outlet and samples along the NW coast partially influenced by the Neretva river plume. In these environmental conditions, Ammonia beccarii, Bulimina marginata, Nonionella turgida and Textularia sp. resulted as the most characteristic taxa. Cluster B1 distinguishes the deepest stations which are in connection with the open Adriatic Sea. Here Asterigerinata mamilla, Buccella granulata, Cibicides group, Reussella spinulosa and Textularia sp. reach their maximum abundance associated with coarse-grained sediments. Cluster B2 groups samples collected in the inner bay of the southernmost sector of the studied area characterized by silt and clay and a negligible influence by river inputs. The benthic microfauna is principally composed of Miliolids, Porosononion granosum and Textularia sp.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12120456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12120456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 ItalyMDPI AG Marilena Cozzolino; Fausto Longo; Natascia Pizzano; Maria Luigia Rizzo; Ottavia Voza; Vincenzo Amato;Roman settlement of Poseidonia-Paestum (southern Italy). Several archaeological excavations were carried out here between the late nineteenth and early twentieth century. Unfortunately, the locations of these excavations are only approximately known, as are the geomorphology and stratigraphy of the temple area. A multidisciplinary study, including stratigraphic, geomorphological, archaeological, and sedimentological investigations, remote sensing, and electromagnetic and geoelectrical tests, was therefore carried out, shedding new light on the geomorphology and stratigraphy of the SW and W temple sectors. The geophysical data obtained revealed anomalies in the subsoil that probably correspond to ancient structures and the cutting of the travertine deposits around the temple. The position and extension of the trenches of the early archaeological excavations were also established. The Temple of Athena is one of the main sacred areas of the Greek&ndash
Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Archivio della Ricerca - Università di SalernoArticle . 2019Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9080324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Archivio della Ricerca - Università di SalernoArticle . 2019Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9080324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publication2022MDPI AG Mette Olivarius; Henrik Vosgerau; Lars Henrik Nielsen; Rikke Weibel; Sebastian N. Malkki; Benjamin D. Heredia; Tonny B. Thomsen;The significance of mineralogical maturity as a provenance indicator has long been debated and we use this study to demonstrate that it can indeed be a powerful tool to track the distribution of sandstone reservoirs. We investigate the cause of the pronounced geographic and stratigraphic differences in mineralogical composition that are found in the Upper Triassic–Lower Jurassic Gassum Formation across the Norwegian–Danish Basin and surrounding areas. Zircon U-Pb dating of 46 sandstone samples including analysis of 4816 detrital grains are combined with quantifications of the detrital mineralogical composition and placed in a sequence stratigraphic framework. The results show that the Gassum Formation can be divided into a southeastern region with high mineralogical maturity and a less mature region to the northwest with more feldspars, rock fragments, micas, and heavy minerals. Both the mineralogical assemblage and the provenance signature have been thoroughly homogenized in the SE region where sediment supplies from the Fennoscandian Shield and the Variscan Orogen are evident. In the NW region, sediment was initially supplied from Fennoscandia only, but the provenance abruptly changed from the Telemarkia Terrane to comprising also the more distant Caledonian Orogen resulting in a different mineralogical assemblage. The change occurred during a basinwide regression and may be caused by tectonic movements in the hinterland that permanently changed the composition of the sediment supplied to the basin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publication2022MDPI AG Authors: Nuno M. S. Alte-da-Veiga; Luis Fernando Sánchez-Sastre; Jesús Martín-Gil; Salvador Hernández-Navarro; +1 AuthorsNuno M. S. Alte-da-Veiga; Luis Fernando Sánchez-Sastre; Jesús Martín-Gil; Salvador Hernández-Navarro; Pablo Martín-Ramos;In the last decades, the application fields of exploration geophysics have considerably broadened, reinforcing the relevance of exploration geophysics courses both within geosciences and non-geosciences degrees. Among these courses, those with a hands-on, place-based pedagogical approach and aligned with problem-based and case-based learning methodologies have proven to be particularly successful in regard to addressing the recognized difficulty that students experience in transferring their classroom knowledge to the field environment. In this article, we report a theoretical–practical module for the teaching of exploration geophysics methods to undergraduate non-geoscience major students, and in particular, to forestry engineering students. The in-field activity, based on a combination of Electrical Resistivity Imaging (ERI) and electromagnetic induction (EM) methods, was complemented with in-class sessions covering the fundamentals of these methods and Archie’s equation, software usage, data analysis and interpretation, and critical in-group discussions. This situated, context-rich teaching and learning example may be reproduced in other teaching institutions to provide technology-driven educational experiences in their curricula, helping students recognize the relevance of the abovementioned geophysical methods to address research questions beyond geology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12120444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12120444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publication2022MDPI AG Authors: Dominik Gottron; Andreas Henk;Dominik Gottron; Andreas Henk;A numerical characterization of a fractured rock mass and its mechanical behavior using a discontinuum approach was carried out utilizing lattice-spring-based synthetic rock mass (LS-SRM) models. First, LS-SRM models on a laboratory scale were created to reproduce standard rock mechanical tests on Triassic sandstone samples from a quarry in Germany. Subsequently, the intact rock properties were upscaled to an element volume representative for geotechnical applications, recalibrated and combined with a Discrete Fracture Network (DFN) model. The resulting fractured rock mass properties are compared to predictions from empirical relationships based on rock mass classification schemes and the DFN-Oda-Geomechanics approach. Modeling results reveal a significant reduction in the strength of the fractured rock mass compared to the intact rock, showing a high agreement with empirically calculated values. Results for the deformation modulus reveal a significant reduction induced by the fracture network and a good agreement compared to the results obtained by other approaches. It is shown that the LS-SRM allows analyzing the complex mechanical behavior during failure of rock masses, including crack initiation, propagation and coalescence. The resulting rock mass properties are key parameters for a wide range of geotechnical applications and can be used for large-scale numerical modeling as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12090343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12090343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 SloveniaMDPI AG Authors: Nejc Bezak; Jošt Sodnik; Matjaž Mikoš;Nejc Bezak; Jošt Sodnik; Matjaž Mikoš;handle: 20.500.12556/RUL-131996
Debris flows with different magnitudes can have a large impact on debris fan characteristics such as height or slope. Moreover, knowledge about the impact of random sequences of debris flows of different magnitudes on debris fan properties is sparse in the literature and can be improved using numerical simulations of debris fan formation. Therefore, in this paper we present the results of numerical simulations wherein we investigated the impact of a random sequence of debris flows on torrential fan formation, where the total volume of transported debris was kept constant, but different rheological properties were used. Overall, 62 debris flow events with different magnitudes from 100 m3 to 20,000 m3 were selected, and the total volume was approximately 225,000 m3. The sequence of these debris flows was randomly generated, and selected debris fan characteristics after the 62 events were compared. For modeling purposes, we applied the Rapid Mass Movement Simulations (RAMMS) software and its debris flow module (RAMMS-DF). The modeling was carried out using (a) real fan topography from an alpine environment (i.e., an actual debris fan in north-west (NW) Slovenia formed by the Suhelj torrent) and (b) an artificial surface with a constant slope. Several RAMMS model parameters were tested. The simulation results confirm that the random sequence of debris flow events has only some minor effects on the fan formation (e.g., slope, maximum height), even when changing debris flow rheological properties in a wide range. After the 62 events, independent of the selected sequence of debris flows, the final fan characteristics were not significantly different from each other. Mann&ndash Whitney (MW) tests and t-tests were used for this purpose, and the selected significance level was 0.05. Moreover, this conclusion applies for artificial and real terrain and for a wide range of tested RAMMS model rheological parameters. Further testing of the RAMMS-DF model in real situations is proposed in order to better understand its applicability and limitations under real conditions for debris flow hazard assessment or the planning of mitigation measures.
Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Repository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9020064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Repository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9020064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019 GermanyMDPI AG Authors: M. Meyer; Ingo Pfeffer; Carsten Jürgens;M. Meyer; Ingo Pfeffer; Carsten Jürgens;While Light Detection and Ranging (LiDAR) revolutionized archaeological prospection and different visualizations were developed, an automated detection of cultural heritage still poses a significant challenge. Therefore, geographers and archaeologists from Westphalia, Germany are developing automated workflows for classifying field monuments from special terrain models. For this project, a combination of GIS, Python, and Object-Based Image Analysis (OBIA) is used. It focuses on three common types of monuments: Ridge and Furrow areas, Burial Mounds, and Motte-and-Bailey castles. The latter two are not classified binary, but in multiple classes, depending on their degree of erosion. This simplifies interpretation by highlighting the most interesting structures without losing the others. The results confirm that OBIA is suitable for detecting field monuments with hit rates of ~90%. A drawback is its dependency on the use of special terrain models like the Difference Map. Further limitations arise in complex terrain situations.
Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Dokumentenrepositorium der RUB / RUB-RepositoryArticle . 2019Data sources: Dokumentenrepositorium der RUB / RUB-Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9030109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . Article . 2019Dokumentenrepositorium der RUB / RUB-RepositoryArticle . 2019Data sources: Dokumentenrepositorium der RUB / RUB-Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9030109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018MDPI AG Authors: Elizabeth M. Morris;Elizabeth M. Morris;An empirical model for the densification of dry snow has been calibrated using strain-rate data from Pine Island Glacier basin, Antarctica. The model provides for a smooth transition between Stage 1 and Stage 2 densification, and leads to an analytical expression for density as a function of depth. It introduces two new parameters with a simple physical basis: transition density &rho 3 and M = 7 for the region. Using these values, the transition model produces better simulations of snow profiles from Pine Island Glacier basin than the well-established Herron and Langway and Ligtenberg models, both of which postulate abrupt transition. Simulation of density profiles from other sites using M = 7 produces the best values of &rho 3 for a low accumulation site, suggesting that transition density may vary with climatic conditions. The variation of bubble close-off depth and depth-integrated porosity with mean annual accumulation predicted by the transition model is similar to that predicted by the Simonsen model tuned for Greenland. T and a scaling factor, M, which controls the extent of the transition zone. The standard (Herron and Langway) parameterization is used for strain rates away from the transition zone. Calibration, though tentative, produces best parameter values of &rho 3 for a high accumulation site and 530 kg m &minus T = 580 kg m &minus T = 550 kg m &minus