Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Publisher
arrow_drop_down
includes
arrow_drop_down
and
arrow_drop_down
Title
arrow_drop_down
includes
arrow_drop_down
1 Research products (2 rules applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maoxi Li; Mengying Shu; Tianyu Lu;

    This paper presents a new method for detecting abnormal patterns in high-frequency trading (HFT) using graph neural networks (GNNs). The increasing sophistication of trading algorithms and the large volume of data have often created unprecedented challenges for traditional market analysis. Our framework addresses these challenges by introducing a GNN-based architecture that takes advantage of the physical and structural properties of business data. The proposed method transforms HFT data into graphical models where the nodes represent market conditions and the edges capture their physical and price relationships. A specialized GNN architecture, incorporating attention mechanisms and temporal convolution modules, is developed to learn complex trading patterns and identify potential anomalies. The model is evaluated on high-frequency trading data from five major stocks listed on NASDAQ, spanning six months of trading activity with over 10 million events. Experimental results demonstrate superior performance compared to existing approaches, achieving a 15% improvement in detection accuracy and maintaining robust performance across different market conditions. The framework exhibits particular strength in identifying complex manipulation patterns while maintaining low false positive rates. Our approach processes large volumes of trading data in real time with significantly reduced computational requirements compared to traditional methods. This research contributes to the development of more effective market surveillance systems and provides valuable insights for regulatory authorities in maintaining market integrity.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.7...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.70393/6a696...
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.7...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.70393/6a696...
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Publisher
arrow_drop_down
includes
arrow_drop_down
and
arrow_drop_down
Title
arrow_drop_down
includes
arrow_drop_down
1 Research products (2 rules applied)
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maoxi Li; Mengying Shu; Tianyu Lu;

    This paper presents a new method for detecting abnormal patterns in high-frequency trading (HFT) using graph neural networks (GNNs). The increasing sophistication of trading algorithms and the large volume of data have often created unprecedented challenges for traditional market analysis. Our framework addresses these challenges by introducing a GNN-based architecture that takes advantage of the physical and structural properties of business data. The proposed method transforms HFT data into graphical models where the nodes represent market conditions and the edges capture their physical and price relationships. A specialized GNN architecture, incorporating attention mechanisms and temporal convolution modules, is developed to learn complex trading patterns and identify potential anomalies. The model is evaluated on high-frequency trading data from five major stocks listed on NASDAQ, spanning six months of trading activity with over 10 million events. Experimental results demonstrate superior performance compared to existing approaches, achieving a 15% improvement in detection accuracy and maintaining robust performance across different market conditions. The framework exhibits particular strength in identifying complex manipulation patterns while maintaining low false positive rates. Our approach processes large volumes of trading data in real time with significantly reduced computational requirements compared to traditional methods. This research contributes to the development of more effective market surveillance systems and provides valuable insights for regulatory authorities in maintaining market integrity.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.7...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.70393/6a696...
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.7...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.70393/6a696...
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph