Filters
Clear AllLoading
Research data keyboard_double_arrow_right Dataset 2023The University of Auckland NIH | Alzheimers Disease Neuroi..., CIHRNIH| Alzheimers Disease Neuroimaging Initiative ,CIHRHuang, David; Qiao, Miao; Yang, Yunhan; Gururajapathy, Sophi; Ke, Yiping; Wang, Alan; Kumar, Haribalan;This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics. Anatomical and functional MRI images of the brain have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains richer structural and positional information that traditional examination methods are unable to capture. However, the lack of brain network data transformed from functional MRI images prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert data from MRI images into brain networks. We bridge this gap by collecting a large amount of available MRI images from existing studies, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 5 different sources, cover 3 neurodegenerative conditions, and consist of a total of 2,642 subjects. We test our graph datasets on 5 machine learning models commonly used in neuroscience and on a recent graph-based analysis model to validate the data quality and to provide domain baselines. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our complete preprocessing details, codes, and brain network data. To stay informed about the new updates of the datasets, kindly provide us with your email address: https://forms.gle/KGAajR6LEysXWKvKA
University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023The University of Auckland CIHR, NIH | Alzheimers Disease Neuroi...CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativeXu, Jiaxing; Yang, Yunhan; Huang, David; Gururajapathy, Sophi; Ke, Yiping; Qiao, Miao; Wang, Defeng; Kumar, Haribalan; McGeown, Josh; Kwon, Eryn;This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics.Anatomical and functional MRI images of the brain have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains richer structural and positional information that traditional examination methods are unable to capture. However, the lack of brain network data transformed from functional MRI images prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert data from MRI images into brain networks. We bridge this gap by collecting a large amount of available MRI images from existing studies, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 6 different sources, cover 4 neurodegenerative conditions, and consist of a total of 2,702 subjects.Due to the data protocol, we are unable to release the ADNI dataset here. The data will be released via the ADNI external data submissions within their data system.We test our graph datasets on 5 machine learning models commonly used in neuroscience and on a recent graph-based analysis model to validate the data quality and to provide domain baselines. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our complete preprocessing details, codes, and brain network data: https://github.com/brainnetuoa/data_driven_network_neuroscience.To stay informed about the new updates of the datasets, kindly provide us with your email address:https://forms.gle/KGAajR6LEysXWKvKA
University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 Netherlandsfigshare EC | PATHAD, NIH | Alzheimers Disease Neuroi..., EC | EMIF +2 projectsEC| PATHAD ,NIH| Alzheimers Disease Neuroimaging Initiative ,EC| EMIF ,CIHR ,SNSF| Macrophage migration inhibitory factor and neuroinflammation in early Alzheimer’s DiseaseVisser, Pieter Jelle; Reus, Lianne M.; Gobom, Johan; Jansen, Iris; Dicks, Ellen; van der Lee, Sven J.; Tsolaki, Magda; Verhey, Frans R. J.; Popp, Julius; Martinez-Lage, Pablo; Vandenberghe, Rik; Lleó, Alberto; Molinuevo, José Luís; Engelborghs, Sebastiaan; Freund-Levi, Yvonne; Froelich, Lutz; Sleegers, Kristel; Dobricic, Valerija; Lovestone, Simon; Streffer, Johannes; Vos, Stephanie J. B.; Bos, Isabelle; Smit, August B.; Blennow, Kaj; Scheltens, Philip; Teunissen, Charlotte E.; Bertram, Lars; Zetterberg, Henrik; Tijms, Betty M.;Additional file 1: Data S1. Participant characteristics. S1a: Characteristics of individuals with CSF Aβ1-42 and tau measurements available; S1b: Characteristics of individuals with CSF proteomic data. Data S2. Protein annotation and statistics of group comparisons of protein levels. Data S3a. Full list of GO biological processes associated with proteins that differ according to group and clinical stage. Data S3b. SynGO enriched synaptic cellular components and biological processes that differ according to group. Data S4a. Estimated marginal means of AD GWAS-based polygenic risk scores in controls, AD individuals with increased t-tau and AD individuals with normal t-tau. Data S4b. Top 1000 SNPS from GWAS on AD individuals with increased t-tau and normal t-tau in pooled ADNI and EMIF-AD MBD cohorts. Data S4c. Difference in MAGMA gene score between AD individuals with increased t-tau and normal t-tau based on t-tau GWAS in pooled ADNI and EMIF-AD MBD cohorts. Data S4d. Difference in GO biological process MAGMA geneset score between AD individuals with increased t-tau and normal t-tau based on t-tau GWAS in pooled ADNI and EMIF-AD MBD cohorts. Data S5a. Correlation between genetic risk score and CSF protein level in individuals with abnormal Aβ1-42. Data S5b. Association of the number of GMNC rs9877502-A risk alleles and number of APOE-e4 alleles with CSF protein concentrations in a linear model in individuals with AD. Data S5c. GO-BP processes enriched for proteins that have a positive or negative association with the number of rs9877502-A risk alleles in an additive model. Data S6. Annual change in imaging measures.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19445890.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19445890.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022The University of Auckland NIH | Alzheimers Disease Neuroi..., CIHRNIH| Alzheimers Disease Neuroimaging Initiative ,CIHRHuang, David; Qiao, Miao; Yang, Yunhan; Gururajapathy, Sophi; Ke, Yiping; Wang, Alan; Kumar, Haribalan;This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics. Anatomical and functional MRI images of the brain have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains richer structural and positional information that traditional examination methods are unable to capture. However, the lack of brain network data transformed from functional MRI images prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert data from MRI images into brain networks. We bridge this gap by collecting a large amount of available MRI images from existing studies, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 5 different sources, cover 3 neurodegenerative conditions, and consist of a total of 2,642 subjects. We test our graph datasets on 5 machine learning models commonly used in neuroscience and on a recent graph-based analysis model to validate the data quality and to provide domain baselines. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our complete preprocessing details, codes, and brain network data. To stay informed about the new updates of the datasets, kindly provide us with your email address: https://forms.gle/KGAajR6LEysXWKvKA
University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022figshare NIH | Administrative Supplement..., FCT | MS3, NIH | Washington University Ins... +9 projectsNIH| Administrative Supplement to Hepatobiology and Toxicology COBRE ,FCT| MS3 ,NIH| Washington University Institute of Clinical and Translational Sciences ,NIH| THE XNAT IMAGING INFORMATICS PLATFORM ,NIH| Alzheimers Disease Neuroimaging Initiative ,NIH| HEALTHY AGING AND SENILE DEMENTIA ,NIH| DRIVING PERFORMANCE IN PRECLINICAL ALZHEIMER'S DISEASE ,NIH| Role of LRP &its ligand tPA in LTP &aging ,NIH| Antecedent Neuroimaging Biomarkers ,NIH| Environmental Exposure and Cardiometabolic Disease ,NIH| MORPHOMETRY BIOMEDICAL INFORMATICS RESEARCH NETWORK ,NIH| Functional-anatomic exploration of cognitive controlAuthors: Bhattacharyya, Arinjita; Pal, Subhadip; Mitra, Riten; Rai, Shesh;Bhattacharyya, Arinjita; Pal, Subhadip; Mitra, Riten; Rai, Shesh;Additional file 1 The additional tables and figures are presented in the Supplementary file.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19682090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19682090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Taylor & Francis CIHR, NIH | Alzheimers Disease Neuroi...CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativeLiu, Mingming; Yang, Jing; Liu, Yushi; Jia, Bochao; Chen, Yun-Fei; Sun, Luna; Ma, Shujie;Uncovering the heterogeneity in the disease progression of Alzheimer's is a key factor to disease understanding and treatment development, so that interventions can be tailored to target the subgroups that will benefit most from the treatment, which is an important goal of precision medicine. However, in practice, one top methodological challenge hindering the heterogeneity investigation is that the true subgroup membership of each individual is often unknown. In this article, we aim to identify latent subgroups of individuals who share a common disorder progress over time, to predict latent subgroup memberships, and to estimate and infer the heterogeneous trajectories among the subgroups. To achieve these goals, we apply a concave fusion learning method to conduct subgroup analysis for longitudinal trajectories of the Alzheimer's disease data. The heterogeneous trajectories are represented by subject-specific unknown functions which are approximated by B-splines. The concave fusion method can simultaneously estimate the spline coefficients and merge them together for the subjects belonging to the same subgroup to automatically identify subgroups and recover the heterogeneous trajectories. The resulting estimator of the disease trajectory of each subgroup is supported by an asymptotic distribution. It provides a sound theoretical basis for further conducting statistical inference in subgroup analysis.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19175227.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19175227.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022figshare NIH | Alzheimers Disease Neuroi..., NIH | Informatics Algorithms fo..., NIH | Advancing Analysis of Mul... +3 projectsNIH| Alzheimers Disease Neuroimaging Initiative ,NIH| Informatics Algorithms for Genomic Analysis of Brain Imaging Data ,NIH| Advancing Analysis of Multi-omics Data in Alzheimer's Disease Research ,CIHR ,NIH| Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks ,NIH| ENIGMA World Aging CenterBaik, Jae Young; Kim, Mansu; Bao, Jingxuan; Long, Qi; Shen, Li;Additional file 1. Table S1: Significance level of brain regions using imaging-diagnosis analysis. Table S2(a): Significance level of identified genes significantly associated with diagnostic outcome using correlation analysis. Table S2(b): Significance level of identified genes related with AD based on DisGeNET. Table S2(c): Significance level of identified genes unrelated with AD based on DisGeNET.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19801871.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19801871.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021figshare NIH | Administrative Core, NIH | Alzheimers Disease Neuroi..., CIHRNIH| Administrative Core ,NIH| Alzheimers Disease Neuroimaging Initiative ,CIHRAuthors: McInerney, Tim W.; Fulton-Howard, Brian; Patterson, Christopher; Paliwal, Devashi; +7 AuthorsMcInerney, Tim W.; Fulton-Howard, Brian; Patterson, Christopher; Paliwal, Devashi; Jermiin, Lars S.; Patel, Hardip R.; Pa, Judy; Swerdlow, Russell H.; Goate, Alison; Easteal, Simon; Andrews, Shea J.;Additional file 2. Supplementary tables. Includes sequence IDs, geographic provenance data, haplogroup assignment summaries, and statistical test results.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16557323.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16557323.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021figshare NIH | Alzheimers Disease Neuroi..., NIH | CORE-- EDUCATION AND INFO..., NIH | Cognitive Aging, Alzheime... +6 projectsNIH| Alzheimers Disease Neuroimaging Initiative ,NIH| CORE-- EDUCATION AND INFORMATION TRANSFER ,NIH| Cognitive Aging, Alzheimers disease, and Cancer-related Cognitive Decline ,NIH| Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease ,NIH| Bioinformatics Strategies for Multidimensional Brain Imaging Genetics ,NIH| Neurogenesis in Adult Brain: Gene Networks and Alzheimer?s Disease ,NIH| Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks ,NIH| Memory Circuitry in MCI and Early Alzheimers Disease ,CIHRPyun, Jung-Min; Park, Young Ho; Lee, Keon-Joo; Kim, SangYun; Saykin, Andrew J.; Nho, Kwangsik;Additional file 2: Table S3. List of mapped genes.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16551325.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16551325.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Taylor & Francis NIH | Alzheimers Disease Neuroi..., NSF | Statistical and Applied M..., NIH | Adaptive Large-Scale Fram... +6 projectsNIH| Alzheimers Disease Neuroimaging Initiative ,NSF| Statistical and Applied Mathematical Sciences Institute ,NIH| Adaptive Large-Scale Framework for Automatic Biomedical Image Segmentation ,NIH| Inter-modal Coupling Image Analytics ,NIH| Spatiotemporal Modeling of MRI Brain Lesion Trajectories of Biomarker Discovery ,NIH| Group testing for infectious disease detection: multiplex assays and back-end screening ,NIH| Statistical Methods for Multilevel Multivariate Functional Studies ,NSF| RII Track-2 FEC: A Multiscale, Multiphysics Modeling Framework for Genome-to Phenome Mapping via Intermediate Phenotypes ,NIH| Statistical methods for large and complex databases of ultra-high-dimensionalAuthors: Brown, D. Andrew; McMahan, Christopher S.; Shinohara, Russell T.; Linn, Kristin A.;Brown, D. Andrew; McMahan, Christopher S.; Shinohara, Russell T.; Linn, Kristin A.;Alzheimer���s disease is a neurodegenerative condition that accelerates cognitive decline relative to normal aging. It is of critical scientific importance to gain a better understanding of early disease mechanisms in the brain to facilitate effective, targeted therapies. The volume of the hippocampus is often used in diagnosis and monitoring of the disease. Measuring this volume via neuroimaging is difficult since each hippocampus must either be manually identified or automatically delineated, a task referred to as segmentation. Automatic hippocampal segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each hippocampus is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms employ voting procedures with voting weights assigned directly or estimated via optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. Our results suggest that incorporating tissue classification (e.g., gray matter) into the label fusion procedure can greatly improve segmentation when relatively homogeneous, healthy brains are used as atlases for diseased brains. The fully Bayesian approach also produces meaningful uncertainty measures about hippocampal volumes, information which can be leveraged to detect significant, scientifically meaningful differences between healthy and diseased populations, improving the potential for early detection and tracking of the disease. Supplementary materials for this article are available online.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.17137003.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.17137003.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
Research data keyboard_double_arrow_right Dataset 2023The University of Auckland NIH | Alzheimers Disease Neuroi..., CIHRNIH| Alzheimers Disease Neuroimaging Initiative ,CIHRHuang, David; Qiao, Miao; Yang, Yunhan; Gururajapathy, Sophi; Ke, Yiping; Wang, Alan; Kumar, Haribalan;This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics. Anatomical and functional MRI images of the brain have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains richer structural and positional information that traditional examination methods are unable to capture. However, the lack of brain network data transformed from functional MRI images prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert data from MRI images into brain networks. We bridge this gap by collecting a large amount of available MRI images from existing studies, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 5 different sources, cover 3 neurodegenerative conditions, and consist of a total of 2,642 subjects. We test our graph datasets on 5 machine learning models commonly used in neuroscience and on a recent graph-based analysis model to validate the data quality and to provide domain baselines. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our complete preprocessing details, codes, and brain network data. To stay informed about the new updates of the datasets, kindly provide us with your email address: https://forms.gle/KGAajR6LEysXWKvKA
University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023The University of Auckland CIHR, NIH | Alzheimers Disease Neuroi...CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativeXu, Jiaxing; Yang, Yunhan; Huang, David; Gururajapathy, Sophi; Ke, Yiping; Qiao, Miao; Wang, Defeng; Kumar, Haribalan; McGeown, Josh; Kwon, Eryn;This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics.Anatomical and functional MRI images of the brain have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains richer structural and positional information that traditional examination methods are unable to capture. However, the lack of brain network data transformed from functional MRI images prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert data from MRI images into brain networks. We bridge this gap by collecting a large amount of available MRI images from existing studies, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 6 different sources, cover 4 neurodegenerative conditions, and consist of a total of 2,702 subjects.Due to the data protocol, we are unable to release the ADNI dataset here. The data will be released via the ADNI external data submissions within their data system.We test our graph datasets on 5 machine learning models commonly used in neuroscience and on a recent graph-based analysis model to validate the data quality and to provide domain baselines. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our complete preprocessing details, codes, and brain network data: https://github.com/brainnetuoa/data_driven_network_neuroscience.To stay informed about the new updates of the datasets, kindly provide us with your email address:https://forms.gle/KGAajR6LEysXWKvKA
University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17608/k6.auckland.21397377.v6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 Netherlandsfigshare EC | PATHAD, NIH | Alzheimers Disease Neuroi..., EC | EMIF +2 projectsEC| PATHAD ,NIH| Alzheimers Disease Neuroimaging Initiative ,EC| EMIF ,CIHR ,SNSF| Macrophage migration inhibitory factor and neuroinflammation in early Alzheimer’s DiseaseVisser, Pieter Jelle; Reus, Lianne M.; Gobom, Johan; Jansen, Iris; Dicks, Ellen; van der Lee, Sven J.; Tsolaki, Magda; Verhey, Frans R. J.; Popp, Julius; Martinez-Lage, Pablo; Vandenberghe, Rik; Lleó, Alberto; Molinuevo, José Luís; Engelborghs, Sebastiaan; Freund-Levi, Yvonne; Froelich, Lutz; Sleegers, Kristel; Dobricic, Valerija; Lovestone, Simon; Streffer, Johannes; Vos, Stephanie J. B.; Bos, Isabelle; Smit, August B.; Blennow, Kaj; Scheltens, Philip; Teunissen, Charlotte E.; Bertram, Lars; Zetterberg, Henrik; Tijms, Betty M.;Additional file 1: Data S1. Participant characteristics. S1a: Characteristics of individuals with CSF Aβ1-42 and tau measurements available; S1b: Characteristics of individuals with CSF proteomic data. Data S2. Protein annotation and statistics of group comparisons of protein levels. Data S3a. Full list of GO biological processes associated with proteins that differ according to group and clinical stage. Data S3b. SynGO enriched synaptic cellular components and biological processes that differ according to group. Data S4a. Estimated marginal means of AD GWAS-based polygenic risk scores in controls, AD individuals with increased t-tau and AD individuals with normal t-tau. Data S4b. Top 1000 SNPS from GWAS on AD individuals with increased t-tau and normal t-tau in pooled ADNI and EMIF-AD MBD cohorts. Data S4c. Difference in MAGMA gene score between AD individuals with increased t-tau and normal t-tau based on t-tau GWAS in pooled ADNI and EMIF-AD MBD cohorts. Data S4d. Difference in GO biological process MAGMA geneset score between AD individuals with increased t-tau and normal t-tau based on t-tau GWAS in pooled ADNI and EMIF-AD MBD cohorts. Data S5a. Correlation between genetic risk score and CSF protein level in individuals with abnormal Aβ1-42. Data S5b. Association of the number of GMNC rs9877502-A risk alleles and number of APOE-e4 alleles with CSF protein concentrations in a linear model in individuals with AD. Data S5c. GO-BP processes enriched for proteins that have a positive or negative association with the number of rs9877502-A risk alleles in an additive model. Data S6. Annual change in imaging measures.
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19445890.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.19445890.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022The University of Auckland NIH | Alzheimers Disease Neuroi..., CIHRNIH| Alzheimers Disease Neuroimaging Initiative ,CIHRHuang, David; Qiao, Miao; Yang, Yunhan; Gururajapathy, Sophi; Ke, Yiping; Wang, Alan; Kumar, Haribalan;This paper presents a comprehensive and quality collection of functional human brain network data for potential research in the intersection of neuroscience, machine learning, and graph analytics. Anatomical and functional MRI images of the brain have been used to understand the functional connectivity of the human brain and are particularly important in identifying underlying neurodegenerative conditions such as Alzheimer's, Parkinson's, and Autism. Recently, the study of the brain in the form of brain networks using machine learning and graph analytics has become increasingly popular, especially to predict the early onset of these conditions. A brain network, represented as a graph, retains richer structural and positional information that traditional examination methods are unable to capture. However, the lack of brain network data transformed from functional MRI images prevents researchers from data-driven explorations. One of the main difficulties lies in the complicated domain-specific preprocessing steps and the exhaustive computation required to convert data from MRI images into brain networks. We bridge this gap by collecting a large amount of available MRI images from existing studies, working with domain experts to make sensible design choices, and preprocessing the MRI images to produce a collection of brain network datasets. The datasets originate from 5 different sources, cover 3 neurodegenerative conditions, and consist of a total of 2,642 subjects. We test our graph datasets on 5 machine learning models commonly used in neuroscience and on a recent graph-based analysis model to validate the data quality and to provide domain baselines. To lower the barrier to entry and promote the research in this interdisciplinary field, we release our complete preprocessing details, codes, and brain network data. To stay informed about the new updates of the datasets, kindly provide us with your email address: https://forms.gle/KGAajR6LEysXWKvKA
University of Auckla... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down