Abstract. Projections of future climate are key to society's adaptation and mitigation plans in response to climate change. Numerical climate models provide projections, but the large dispersion between them makes future climate very uncertain. To refine it, approaches called observational constraints (OC) have been developed. They constrain an ensemble of climate projections by some real-world observations. However, there are many difficulties in dealing with the large literature on OC: the methods are diverse, the mathematical formulation and underlying assumptions used are not always clear, and the methods are often limited to the use of the observation of only one variable. To address these challenges, this article proposes a new statistical model called ClimLoco1.0, which stands for "CLimate variable confidence Interval of Multivariate Linear Observational COnstraint". It describes, in a rigorous way, the confidence interval of a projected variable (its best guess associated with an uncertainty at a confidence level) obtained using a multivariate linear OC. The article is built up in increasing complexity by expressing in three different cases, the last one being ClimLoco1.0, the confidence interval of a projected variable: unconstrained, constrained by multiple real-world observations assumed to be noiseless, and constrained by multiple real-world observations assumed to be noisy. ClimLoco1.0 thus accounts for observational noise (instrumental error and climate-internal variability), which is sometimes neglected in the literature but is important as it reduces the impact of the OC. Furthermore, ClimLoco1.0 accounts for uncertainty rigorously by taking into account the quality of the estimators, which depends, for example, on the number of climate models considered. In addition to providing an interpretation of the mathematical results, this article provides graphical interpretations based on synthetic data.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2025-62&type=result"></script>');
-->
</script>
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2025-62&type=result"></script>');
-->
</script>
doi: 10.1029/2024jc021184
AbstractStarting in 2012, the eastern subpolar North Atlantic experienced the strongest surface freshening in the past 120 years. It is yet unknown whether this salinity anomaly propagated downward into the water column and affected the properties of the boundary currents of the subpolar gyre, which could slow down the overturning. Here, we investigate the imprint of this salinity anomaly on the warm and saline Irminger Current (IC) in the decade thereafter. Using daily mooring data from the IC covering the period 2014–2022 combined with hydrographic sections across the adjacent basins from 1990, the evolving signal of the salinity anomaly over the water column and its imprint on the transport variability is studied. We find that due to the salinity anomaly, the northward freshwater transport of the IC increased by 10 mSv in summer 2016 compared to summer 2015. In 2018, the salinity anomaly covered the water column down to 1,500 m depth. Hydrographic sections across the basin showed that this recent freshening signal spread across the Irminger Sea. Overall, the freshwater transport of the IC increased by a factor of three between 2014–2015 and 2021–2022. The associated density decrease over the upper 1,500 m of the water column resulted in an increase in the northward transport of waters lighter than σ0 = 27.55 kg m−3 from 1.7 to 4.2 Sv. This change in northward IC transport by density class may impact the characteristics of the overturning in the Northeastern Atlantic, its strength and the density at which it peaks.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024jc021184&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024jc021184&type=result"></script>');
-->
</script>
handle: 11250/3151641
AbstractThe overflow of cold water through the Faroe Bank Channel (FBC) is the densest water crossing the Greenland‐Scotland Ridge and the densest source for the Atlantic Meridional Overturning Circulation (AMOC). Here, we show that the overflow volume transport remained stable from 1996 to 2022, but that the bottom water warmed at an average rate of 0.1°C per decade, mainly caused by warming of deep waters upstream. The salinity of the overflow water has increased as a lagged and reduced response to the salinity increase seen in the upper‐layer source waters. Therefore, the potential density of the bottom water over the FBC sill shows no statistically significant trend. After entrainment of warmer ambient waters downstream of the FBC, the nonlinear density dependence upon temperature implies, however, that the overflow contributed water of reduced density to the local overturning and the deep limb of the AMOC.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110097&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110097&type=result"></script>');
-->
</script>
Abstract. In this study, we address a persistent positive bias in Arctic sea ice (concentration and thickness) in the global climate model EC-Earth3 (ECE3) by including a modulating factor to the surface sensible heat flux over regions with sea ice concentrations above 70 %, so-called ECE3L. We performed two pairs of 50-year simulations with repeated seasonal cycles: one pair replicating a cold climate and the other a warmer climate, with the latter characterised by thinner ice and weaker atmospheric boundary layer stability during winter. We show that modified heat flux can significantly alter surface air temperatures in the Arctic, with no substantial impact on lower latitudes. The changes are more pronounced in the cold climate, particularly during Arctic winter. We extended our comparison to two CMIP6 historical ensembles in a transient climate (1980–2014). We found that the mean sea ice states in the changing climate for the ECE3 (ECE3L) ensemble mean closely resembled the mean states in the cold-climate experiment. However, the reduction in sea ice area and volume achieved by ECE3L was nearly four times greater in the cold climate experiment than in the transient climate, reflecting the diminishing role of sea ice leads in a changing climate with decreasing occurrences of stable stratification in winter. Finally, our comparisons with satellite observations and reanalysis datasets demonstrated that ECEL3 significantly improves the local amplification ratio in the marginal ice zone of the Arctic, underscoring the importance of atmospheric stability shaped by central Arctic pack ice and its impact on Arctic amplification.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2024-1865&type=result"></script>');
-->
</script>
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2024-1865&type=result"></script>');
-->
</script>
Abstract. Amplified Arctic ice loss in recent decades has been linked to the increased occurrence of extreme mid-latitude weather. The underlying mechanisms remain elusive, however. One potential link occurs through the ocean as the loss of sea ice and glacial ice leads to increased freshwater fluxes into the ocean. Thus, in this study, we examine the link between North Atlantic freshwater anomalies and European summer weather. Combining a comprehensive set of observational products, we show that stronger freshwater anomalies are associated with a sharper sea surface temperature front between the subpolar and the subtropical North Atlantic in winter, an increased atmospheric instability above the sea surface temperature front, and a large-scale atmospheric circulation that induces a northward shift in the North Atlantic Current, strengthening the sea surface temperature front. In the following summer, the lower-tropospheric winds are deflected northward along the enhanced sea surface temperature front and the European coastline, forming part of a large-scale atmospheric circulation anomaly that is associated with warmer and drier weather over Europe. The identified statistical links are significant on timescales from years to decades and indicate an enhanced predictability of European summer weather at least a winter in advance, with the exact regions and amplitudes of the warm and dry weather anomalies over Europe being sensitive to the location, strength, and extent of North Atlantic freshwater anomalies in the preceding winter.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wcd-5-109-2024&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 2 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wcd-5-109-2024&type=result"></script>');
-->
</script>
Abstract This study investigates the stratospheric response to Arctic sea ice loss and subsequent near-surface impacts by analyzing 200-member coupled experiments using the Whole Atmosphere Community Climate Model version 6 (WACCM6) with preindustrial, present-day, and future sea ice conditions specified following the protocol of the Polar Amplification Model Intercomparison Project. The stratospheric polar vortex weakens significantly in response to the prescribed sea ice loss, with a larger response to greater ice loss (i.e., future minus preindustrial) than to smaller ice loss (i.e., future minus present-day). Following the weakening of the stratospheric circulation in early boreal winter, the coupled stratosphere–troposphere response to ice loss strengthens in late winter and early spring, projecting onto a negative North Atlantic Oscillation–like pattern in the lower troposphere. To investigate whether the stratospheric response to sea ice loss and subsequent surface impacts depend on the background oceanic state, ensemble members are initialized by a combination of varying phases of Atlantic multidecadal variability (AMV) and interdecadal Pacific variability (IPV). Different AMV and IPV states combined, indeed, can modulate the stratosphere–troposphere responses to sea ice loss, particularly in the North Atlantic sector. Similar experiments with another climate model show that, although strong sea ice forcing also leads to tighter stratosphere–troposphere coupling than weak sea ice forcing, the timing of the response differs from that in WACCM6. Our findings suggest that Arctic sea ice loss can affect the stratospheric circulation and subsequent tropospheric variability on seasonal time scales, but modulation by the background oceanic state and model dependence need to be taken into account. Significance Statement This study uses new-generation climate models to better understand the impacts of Arctic sea ice loss on the surface climate in the midlatitudes, including North America, Europe, and Siberia. We focus on the stratosphere–troposphere pathway, which involves the weakening of stratospheric winds and its downward coupling into the troposphere. Our results show that Arctic sea ice loss can affect the surface climate in the midlatitudes via the stratosphere–troposphere pathway, and highlight the modulations from background mean oceanic states as well as model dependence.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-23-0128.1&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-23-0128.1&type=result"></script>');
-->
</script>
AbstractInterconnections between ocean basins are recognized as an important driver of climate variability. Recent modeling evidence suggests that the North Atlantic climate can respond to persistent warming of the tropical Indian Ocean sea surface temperature (SST) relative to the rest of the tropics (rTIO). Here, we use observational data to demonstrate that multi-decadal changes in pantropical ocean temperature gradients lead to variations of an SST-based proxy of the Atlantic Meridional Overturning Circulation (AMOC). The largest contribution to this temperature gradient-AMOC connection comes from gradients between the Indian and Atlantic Oceans. The rTIO index yields the strongest connection of this tropical temperature gradient to the AMOC. Focusing on the internally generated signal in three observational products reveals that an SST-based AMOC proxy index has closely followed low-frequency changes of rTIO temperature with about 26-year lag since 1870. Analyzing the pre-industrial control simulations of 44 CMIP6 climate models shows that the AMOC proxy index lags simulated mid-latitude AMOC variations by 4 ± 4 years. These model simulations reveal the mechanism connecting AMOC variations to pantropical ocean temperature gradients at a 27 ± 2 years lag, matching the observed time lag in 28 out of the 44 analyzed models. rTIO temperature changes affect the North Atlantic climate through atmospheric planetary waves, impacting temperature and salinity in the subpolar North Atlantic, which modifies deep convection and ultimately the AMOC. Through this mechanism, observed internal rTIO variations can serve as a multi-decadal precursor of AMOC changes with important implications for AMOC dynamics and predictability.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41612-023-00489-x&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41612-023-00489-x&type=result"></script>');
-->
</script>
Talk presented on Wed 18 Oct 2023, 12:00 - 14:00 UTC at the Ocean Best Practices (OBPS), a focus session. Exploring Ocean-Climate Dynamics: Observations, Collaboration, and Policy Implications
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10040145&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10040145&type=result"></script>');
-->
</script>
AbstractThe ocean is taking up additional heat but how this affects ocean circulation and heat transport is unclear. Here, using coupled model intercomparison project phase 5/6 (CMIP5/6) climate projections, we show a future decrease in poleward ocean heat transport (OHT) across all Northern Hemisphere latitudes and south of 10° S. Most notably, the CMIP5/6 multimodel mean reduction in poleward OHT for the Atlantic at 26.5° N and Indo-Pacific at 20° S is 0.093–0.304 PW and 0.097–0.194 PW, respectively, dependent on scenario and CMIP phase. These changes in OHT are driven by decline in overturning circulation dampened by upper ocean warming. In the Southern Ocean, the reduction in poleward OHT at 55° S is 0.071–0.268 PW. The projected changes are stronger in CMIP6, even when corrected for its larger climate sensitivity. This is especially noticable in the Atlantic Ocean for the weaker forcing scenarios (shared socioeconomic pathway SSP 1-2.6/representative concentration pathways RCP 2.6), where the decrease is 2.5 times larger at 26.5° N due to a stronger decline in the Atlantic meridional overturning circulation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01829-8&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 12 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01829-8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2023-828-ac1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2023-828-ac1&type=result"></script>');
-->
</script>
Abstract. Projections of future climate are key to society's adaptation and mitigation plans in response to climate change. Numerical climate models provide projections, but the large dispersion between them makes future climate very uncertain. To refine it, approaches called observational constraints (OC) have been developed. They constrain an ensemble of climate projections by some real-world observations. However, there are many difficulties in dealing with the large literature on OC: the methods are diverse, the mathematical formulation and underlying assumptions used are not always clear, and the methods are often limited to the use of the observation of only one variable. To address these challenges, this article proposes a new statistical model called ClimLoco1.0, which stands for "CLimate variable confidence Interval of Multivariate Linear Observational COnstraint". It describes, in a rigorous way, the confidence interval of a projected variable (its best guess associated with an uncertainty at a confidence level) obtained using a multivariate linear OC. The article is built up in increasing complexity by expressing in three different cases, the last one being ClimLoco1.0, the confidence interval of a projected variable: unconstrained, constrained by multiple real-world observations assumed to be noiseless, and constrained by multiple real-world observations assumed to be noisy. ClimLoco1.0 thus accounts for observational noise (instrumental error and climate-internal variability), which is sometimes neglected in the literature but is important as it reduces the impact of the OC. Furthermore, ClimLoco1.0 accounts for uncertainty rigorously by taking into account the quality of the estimators, which depends, for example, on the number of climate models considered. In addition to providing an interpretation of the mathematical results, this article provides graphical interpretations based on synthetic data.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2025-62&type=result"></script>');
-->
</script>
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2025-62&type=result"></script>');
-->
</script>
doi: 10.1029/2024jc021184
AbstractStarting in 2012, the eastern subpolar North Atlantic experienced the strongest surface freshening in the past 120 years. It is yet unknown whether this salinity anomaly propagated downward into the water column and affected the properties of the boundary currents of the subpolar gyre, which could slow down the overturning. Here, we investigate the imprint of this salinity anomaly on the warm and saline Irminger Current (IC) in the decade thereafter. Using daily mooring data from the IC covering the period 2014–2022 combined with hydrographic sections across the adjacent basins from 1990, the evolving signal of the salinity anomaly over the water column and its imprint on the transport variability is studied. We find that due to the salinity anomaly, the northward freshwater transport of the IC increased by 10 mSv in summer 2016 compared to summer 2015. In 2018, the salinity anomaly covered the water column down to 1,500 m depth. Hydrographic sections across the basin showed that this recent freshening signal spread across the Irminger Sea. Overall, the freshwater transport of the IC increased by a factor of three between 2014–2015 and 2021–2022. The associated density decrease over the upper 1,500 m of the water column resulted in an increase in the northward transport of waters lighter than σ0 = 27.55 kg m−3 from 1.7 to 4.2 Sv. This change in northward IC transport by density class may impact the characteristics of the overturning in the Northeastern Atlantic, its strength and the density at which it peaks.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024jc021184&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024jc021184&type=result"></script>');
-->
</script>
handle: 11250/3151641
AbstractThe overflow of cold water through the Faroe Bank Channel (FBC) is the densest water crossing the Greenland‐Scotland Ridge and the densest source for the Atlantic Meridional Overturning Circulation (AMOC). Here, we show that the overflow volume transport remained stable from 1996 to 2022, but that the bottom water warmed at an average rate of 0.1°C per decade, mainly caused by warming of deep waters upstream. The salinity of the overflow water has increased as a lagged and reduced response to the salinity increase seen in the upper‐layer source waters. Therefore, the potential density of the bottom water over the FBC sill shows no statistically significant trend. After entrainment of warmer ambient waters downstream of the FBC, the nonlinear density dependence upon temperature implies, however, that the overflow contributed water of reduced density to the local overturning and the deep limb of the AMOC.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110097&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl110097&type=result"></script>');
-->
</script>
Abstract. In this study, we address a persistent positive bias in Arctic sea ice (concentration and thickness) in the global climate model EC-Earth3 (ECE3) by including a modulating factor to the surface sensible heat flux over regions with sea ice concentrations above 70 %, so-called ECE3L. We performed two pairs of 50-year simulations with repeated seasonal cycles: one pair replicating a cold climate and the other a warmer climate, with the latter characterised by thinner ice and weaker atmospheric boundary layer stability during winter. We show that modified heat flux can significantly alter surface air temperatures in the Arctic, with no substantial impact on lower latitudes. The changes are more pronounced in the cold climate, particularly during Arctic winter. We extended our comparison to two CMIP6 historical ensembles in a transient climate (1980–2014). We found that the mean sea ice states in the changing climate for the ECE3 (ECE3L) ensemble mean closely resembled the mean states in the cold-climate experiment. However, the reduction in sea ice area and volume achieved by ECE3L was nearly four times greater in the cold climate experiment than in the transient climate, reflecting the diminishing role of sea ice leads in a changing climate with decreasing occurrences of stable stratification in winter. Finally, our comparisons with satellite observations and reanalysis datasets demonstrated that ECEL3 significantly improves the local amplification ratio in the marginal ice zone of the Arctic, underscoring the importance of atmospheric stability shaped by central Arctic pack ice and its impact on Arctic amplification.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2024-1865&type=result"></script>');
-->
</script>
hybrid |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2024-1865&type=result"></script>');
-->
</script>
Abstract. Amplified Arctic ice loss in recent decades has been linked to the increased occurrence of extreme mid-latitude weather. The underlying mechanisms remain elusive, however. One potential link occurs through the ocean as the loss of sea ice and glacial ice leads to increased freshwater fluxes into the ocean. Thus, in this study, we examine the link between North Atlantic freshwater anomalies and European summer weather. Combining a comprehensive set of observational products, we show that stronger freshwater anomalies are associated with a sharper sea surface temperature front between the subpolar and the subtropical North Atlantic in winter, an increased atmospheric instability above the sea surface temperature front, and a large-scale atmospheric circulation that induces a northward shift in the North Atlantic Current, strengthening the sea surface temperature front. In the following summer, the lower-tropospheric winds are deflected northward along the enhanced sea surface temperature front and the European coastline, forming part of a large-scale atmospheric circulation anomaly that is associated with warmer and drier weather over Europe. The identified statistical links are significant on timescales from years to decades and indicate an enhanced predictability of European summer weather at least a winter in advance, with the exact regions and amplitudes of the warm and dry weather anomalies over Europe being sensitive to the location, strength, and extent of North Atlantic freshwater anomalies in the preceding winter.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wcd-5-109-2024&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 2 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wcd-5-109-2024&type=result"></script>');
-->
</script>
Abstract This study investigates the stratospheric response to Arctic sea ice loss and subsequent near-surface impacts by analyzing 200-member coupled experiments using the Whole Atmosphere Community Climate Model version 6 (WACCM6) with preindustrial, present-day, and future sea ice conditions specified following the protocol of the Polar Amplification Model Intercomparison Project. The stratospheric polar vortex weakens significantly in response to the prescribed sea ice loss, with a larger response to greater ice loss (i.e., future minus preindustrial) than to smaller ice loss (i.e., future minus present-day). Following the weakening of the stratospheric circulation in early boreal winter, the coupled stratosphere–troposphere response to ice loss strengthens in late winter and early spring, projecting onto a negative North Atlantic Oscillation–like pattern in the lower troposphere. To investigate whether the stratospheric response to sea ice loss and subsequent surface impacts depend on the background oceanic state, ensemble members are initialized by a combination of varying phases of Atlantic multidecadal variability (AMV) and interdecadal Pacific variability (IPV). Different AMV and IPV states combined, indeed, can modulate the stratosphere–troposphere responses to sea ice loss, particularly in the North Atlantic sector. Similar experiments with another climate model show that, although strong sea ice forcing also leads to tighter stratosphere–troposphere coupling than weak sea ice forcing, the timing of the response differs from that in WACCM6. Our findings suggest that Arctic sea ice loss can affect the stratospheric circulation and subsequent tropospheric variability on seasonal time scales, but modulation by the background oceanic state and model dependence need to be taken into account. Significance Statement This study uses new-generation climate models to better understand the impacts of Arctic sea ice loss on the surface climate in the midlatitudes, including North America, Europe, and Siberia. We focus on the stratosphere–troposphere pathway, which involves the weakening of stratospheric winds and its downward coupling into the troposphere. Our results show that Arctic sea ice loss can affect the surface climate in the midlatitudes via the stratosphere–troposphere pathway, and highlight the modulations from background mean oceanic states as well as model dependence.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-23-0128.1&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-23-0128.1&type=result"></script>');
-->
</script>
AbstractInterconnections between ocean basins are recognized as an important driver of climate variability. Recent modeling evidence suggests that the North Atlantic climate can respond to persistent warming of the tropical Indian Ocean sea surface temperature (SST) relative to the rest of the tropics (rTIO). Here, we use observational data to demonstrate that multi-decadal changes in pantropical ocean temperature gradients lead to variations of an SST-based proxy of the Atlantic Meridional Overturning Circulation (AMOC). The largest contribution to this temperature gradient-AMOC connection comes from gradients between the Indian and Atlantic Oceans. The rTIO index yields the strongest connection of this tropical temperature gradient to the AMOC. Focusing on the internally generated signal in three observational products reveals that an SST-based AMOC proxy index has closely followed low-frequency changes of rTIO temperature with about 26-year lag since 1870. Analyzing the pre-industrial control simulations of 44 CMIP6 climate models shows that the AMOC proxy index lags simulated mid-latitude AMOC variations by 4 ± 4 years. These model simulations reveal the mechanism connecting AMOC variations to pantropical ocean temperature gradients at a 27 ± 2 years lag, matching the observed time lag in 28 out of the 44 analyzed models. rTIO temperature changes affect the North Atlantic climate through atmospheric planetary waves, impacting temperature and salinity in the subpolar North Atlantic, which modifies deep convection and ultimately the AMOC. Through this mechanism, observed internal rTIO variations can serve as a multi-decadal precursor of AMOC changes with important implications for AMOC dynamics and predictability.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41612-023-00489-x&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41612-023-00489-x&type=result"></script>');
-->
</script>
Talk presented on Wed 18 Oct 2023, 12:00 - 14:00 UTC at the Ocean Best Practices (OBPS), a focus session. Exploring Ocean-Climate Dynamics: Observations, Collaboration, and Policy Implications
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10040145&type=result"></script>');
-->
</script>
Green |
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10040145&type=result"></script>');
-->
</script>
AbstractThe ocean is taking up additional heat but how this affects ocean circulation and heat transport is unclear. Here, using coupled model intercomparison project phase 5/6 (CMIP5/6) climate projections, we show a future decrease in poleward ocean heat transport (OHT) across all Northern Hemisphere latitudes and south of 10° S. Most notably, the CMIP5/6 multimodel mean reduction in poleward OHT for the Atlantic at 26.5° N and Indo-Pacific at 20° S is 0.093–0.304 PW and 0.097–0.194 PW, respectively, dependent on scenario and CMIP phase. These changes in OHT are driven by decline in overturning circulation dampened by upper ocean warming. In the Southern Ocean, the reduction in poleward OHT at 55° S is 0.071–0.268 PW. The projected changes are stronger in CMIP6, even when corrected for its larger climate sensitivity. This is especially noticable in the Atlantic Ocean for the weaker forcing scenarios (shared socioeconomic pathway SSP 1-2.6/representative concentration pathways RCP 2.6), where the decrease is 2.5 times larger at 26.5° N due to a stronger decline in the Atlantic meridional overturning circulation.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01829-8&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 12 | |
popularity | Top 10% | |
influence | Average | |
impulse | Top 10% |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-023-01829-8&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2023-828-ac1&type=result"></script>');
-->
</script>
citations | 0 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2023-828-ac1&type=result"></script>');
-->
</script>