handle: 11104/0319191
A comparative study is reported for electrodeposited copper(I) thiocyanate layers (ca. 500 nm) on two types of conductive/semiconductive substrates: i) carbon (boron-doped diamond_BDD, glass-like carbon_GC), and ii) carbon-free F-doped SnO2 conducting glass (FTO). SEM and Raman evidence that electrodeposition from aqueous solution results in homogenous CuSCN layers with dominant thiocyanate ion bounded to copper through its S-end (Cu−SCN bonding), as in spin-coated CuSCN layers. Electrochemical impedance spectroscopy (EIS) confirms the p-type semiconductivity of layers with a flatband potential from 0.1 to 0.18 V vs. Ag/AgCl depending on the substrate type, and the acceptor concentration (NA) of 5 x 1020cm-3 in all cases. The flatband potentials determined from Mott-Schottky plots (EIS) are in good agreement with the Kelvin probe measurements. The blocking quality of CuSCN layers was tested using Ru(NH3)63+/2+ redox probe. CuSCN deposited on BDD substrate exhibits better blocking properties compared to CuSCN deposited on FTO.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37904/nanocon.2020.3727&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37904/nanocon.2020.3727&type=result"></script>');
-->
</script>
handle: 11104/0319191
A comparative study is reported for electrodeposited copper(I) thiocyanate layers (ca. 500 nm) on two types of conductive/semiconductive substrates: i) carbon (boron-doped diamond_BDD, glass-like carbon_GC), and ii) carbon-free F-doped SnO2 conducting glass (FTO). SEM and Raman evidence that electrodeposition from aqueous solution results in homogenous CuSCN layers with dominant thiocyanate ion bounded to copper through its S-end (Cu−SCN bonding), as in spin-coated CuSCN layers. Electrochemical impedance spectroscopy (EIS) confirms the p-type semiconductivity of layers with a flatband potential from 0.1 to 0.18 V vs. Ag/AgCl depending on the substrate type, and the acceptor concentration (NA) of 5 x 1020cm-3 in all cases. The flatband potentials determined from Mott-Schottky plots (EIS) are in good agreement with the Kelvin probe measurements. The blocking quality of CuSCN layers was tested using Ru(NH3)63+/2+ redox probe. CuSCN deposited on BDD substrate exhibits better blocking properties compared to CuSCN deposited on FTO.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37904/nanocon.2020.3727&type=result"></script>');
-->
</script>
Green | |
hybrid |
citations | 1 | |
popularity | Average | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.37904/nanocon.2020.3727&type=result"></script>');
-->
</script>