Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
PID
arrow_drop_down
is
arrow_drop_down
1 Research products (1 rule applied)

Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vála, L.; Vavruňková, V.; Jandová, V. (Věra); Křenek, T.;

    Abstract Silica–titania mixed oxides and composites have been extensively studied, whereas to the titanium monoxide (TiO) –silicon monoxide (SiO) counterparts has been devoted very little attention. Laser ablation of SiO and TiO in liquids is in according with literature completely unexplored. Here we report on Nd:YAG pulse laser ablation of SiO and TiO in ethanol which allows generation of SiO- and TiO-based nanoparticles and their agglomerates. Mixed SiO-TiO colloid has been prepared by simple mixing of ablatively prepared individual colloids in 1:1 volume ratio. Measurement of size distribution by Dynamic Light Scattering (DLS) determines sizes of 24.85 nm and 262.3 nm for SiO colloid, 494.8 nm for TiO colloid and 35.2 nm and 397.5 nm for mixed colloid. Zeta potential values suggest incipient instability for all measured systems. Morphology of the particles captured on Ta substrate by evaporation of ethanol was studied using Scanning Electron Microscopy (SEM). Round-shaped, oval, and sheet-like particles and their agglomerates have been observed. Raman spectroscopy of the mixed SiO-TiO colloid revealed multiphase structure consisting of anatase and/or rutile, crystalline and amorphous silicon and silica and crystalline and amorphous titanium silicide TiSi2. Formation of TiSi2 demonstrates unexpected low temperature disproportionation of SiO and TiO-based species and mutual reducing interactions. Catalytic activity of individual SiO and TiO colloids and of their mixture has been tested in terms of methylene blue (MB) degradation under the daylight. TiO-SiO mixture exhibits higher solar-light catalytic activity compared to individual colloids which could by explain by the presence of highly photocatalytic TiSi2. These results represent potential of SiO and TiO reducing interactions which are favorable for generation of photocatalytic materials for water remediation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics :...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Physics : Conference Series
    Article . 2020
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics :...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Physics : Conference Series
      Article . 2020
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
PID
arrow_drop_down
is
arrow_drop_down
1 Research products (1 rule applied)
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vála, L.; Vavruňková, V.; Jandová, V. (Věra); Křenek, T.;

    Abstract Silica–titania mixed oxides and composites have been extensively studied, whereas to the titanium monoxide (TiO) –silicon monoxide (SiO) counterparts has been devoted very little attention. Laser ablation of SiO and TiO in liquids is in according with literature completely unexplored. Here we report on Nd:YAG pulse laser ablation of SiO and TiO in ethanol which allows generation of SiO- and TiO-based nanoparticles and their agglomerates. Mixed SiO-TiO colloid has been prepared by simple mixing of ablatively prepared individual colloids in 1:1 volume ratio. Measurement of size distribution by Dynamic Light Scattering (DLS) determines sizes of 24.85 nm and 262.3 nm for SiO colloid, 494.8 nm for TiO colloid and 35.2 nm and 397.5 nm for mixed colloid. Zeta potential values suggest incipient instability for all measured systems. Morphology of the particles captured on Ta substrate by evaporation of ethanol was studied using Scanning Electron Microscopy (SEM). Round-shaped, oval, and sheet-like particles and their agglomerates have been observed. Raman spectroscopy of the mixed SiO-TiO colloid revealed multiphase structure consisting of anatase and/or rutile, crystalline and amorphous silicon and silica and crystalline and amorphous titanium silicide TiSi2. Formation of TiSi2 demonstrates unexpected low temperature disproportionation of SiO and TiO-based species and mutual reducing interactions. Catalytic activity of individual SiO and TiO colloids and of their mixture has been tested in terms of methylene blue (MB) degradation under the daylight. TiO-SiO mixture exhibits higher solar-light catalytic activity compared to individual colloids which could by explain by the presence of highly photocatalytic TiSi2. These results represent potential of SiO and TiO reducing interactions which are favorable for generation of photocatalytic materials for water remediation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics :...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Physics : Conference Series
    Article . 2020
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics :...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Physics : Conference Series
      Article . 2020
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph