Filters
Year range
-chevron_right GOField of Science [Beta] (7)
description Publicationkeyboard_double_arrow_right Article 2020 Czech RepublicElsevier BV Authors: Karel Soukup; Vladimír Hejtmánek; Olga Šolcová;Karel Soukup; Vladimír Hejtmánek; Olga Šolcová;handle: 11104/0294709
Abstract Effective transport properties of two biocompatible nanofibrous membranes—gelatin and chitosan—were evaluated using the gas transport measurement. The assessments involve the counter-current diffusion carried out both in Graham's and Wicke-Kallenbach cells under isothermal steady-state conditions. Additionally, the isothermal quasi-stationary gas permeation was also performed in modified Wicke-Kallenbach cell. It was found that the obtained transport characteristics reflect the gas transport mechanism which takes place predominantly in the continuum regime due to the prevailing macroporosity of the electrospun nanofibrous membranes. The gas permeation transport characteristics were evaluated from permeation cell measurements carried out at low pressures. The actual transport mechanism corresponded to the Knudsen flow dominating over continuous flow. The accuracy of the transport characteristics was estimated as the 95% confidence regions. It was confirmed that the confidence region shape of the optimized transport characteristics was intimately connected with the prevailing mass transport mechanism.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2019.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2019.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2020 Czech RepublicElsevier BV Authors: Karel Soukup; Vladimír Hejtmánek; Olga Šolcová;Karel Soukup; Vladimír Hejtmánek; Olga Šolcová;handle: 11104/0294709
Abstract Effective transport properties of two biocompatible nanofibrous membranes—gelatin and chitosan—were evaluated using the gas transport measurement. The assessments involve the counter-current diffusion carried out both in Graham's and Wicke-Kallenbach cells under isothermal steady-state conditions. Additionally, the isothermal quasi-stationary gas permeation was also performed in modified Wicke-Kallenbach cell. It was found that the obtained transport characteristics reflect the gas transport mechanism which takes place predominantly in the continuum regime due to the prevailing macroporosity of the electrospun nanofibrous membranes. The gas permeation transport characteristics were evaluated from permeation cell measurements carried out at low pressures. The actual transport mechanism corresponded to the Knudsen flow dominating over continuous flow. The accuracy of the transport characteristics was estimated as the 95% confidence regions. It was confirmed that the confidence region shape of the optimized transport characteristics was intimately connected with the prevailing mass transport mechanism.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2019.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2019.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu