Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
PID
arrow_drop_down
is
arrow_drop_down
1 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vrba, J.; Roubalová, L.; Církva, V. (Vladimír); Storch, J. (Jan); +1 Authors

    Carbohelicenes are a group of helical-shaped polycyclic aromatic hydrocarbons. This study examined the effect of hexahelicene (or [6]helicene) and of its imidazolium derivative, 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide (I[6]H), on the activity of the aryl hydrocarbon receptor (AhR) and expression of cytochrome P450 1A1 (CYP1A1) in human hepatoma HepG2 cells. An MTT viability assay showed that both [6]helicene and I[6]H were cytotoxic to HepG2 cells after 24 h of exposure, with IC50 values of 0.9 and 8.4 μM, respectively. Using a gene reporter assay performed in transiently transfected HepG2 cells, we found that 1 μM [6]helicene, unlike I[6]H, significantly increased the activity of AhR to 2.1-fold compared to the control after 24 h of exposure. Moreover, [6]helicene induced a small but significant increase in the level of CYP1A1 mRNA. On the other hand, neither the protein level nor activity of CYP1A1 were affected by [6]helicene in HepG2 cells. The effect of [6]helicene on the AhR pathway was thus much lower than that of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent AhR activator. We conclude that [6]helicene is a poor activator of the AhR pathway in HepG2 cells, and that the possible activation of the AhR pathway in vivo remains to be investigated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Toxicology in Vitro
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Toxicology in Vitro
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
PID
arrow_drop_down
is
arrow_drop_down
1 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vrba, J.; Roubalová, L.; Církva, V. (Vladimír); Storch, J. (Jan); +1 Authors

    Carbohelicenes are a group of helical-shaped polycyclic aromatic hydrocarbons. This study examined the effect of hexahelicene (or [6]helicene) and of its imidazolium derivative, 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide (I[6]H), on the activity of the aryl hydrocarbon receptor (AhR) and expression of cytochrome P450 1A1 (CYP1A1) in human hepatoma HepG2 cells. An MTT viability assay showed that both [6]helicene and I[6]H were cytotoxic to HepG2 cells after 24 h of exposure, with IC50 values of 0.9 and 8.4 μM, respectively. Using a gene reporter assay performed in transiently transfected HepG2 cells, we found that 1 μM [6]helicene, unlike I[6]H, significantly increased the activity of AhR to 2.1-fold compared to the control after 24 h of exposure. Moreover, [6]helicene induced a small but significant increase in the level of CYP1A1 mRNA. On the other hand, neither the protein level nor activity of CYP1A1 were affected by [6]helicene in HepG2 cells. The effect of [6]helicene on the AhR pathway was thus much lower than that of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent AhR activator. We conclude that [6]helicene is a poor activator of the AhR pathway in HepG2 cells, and that the possible activation of the AhR pathway in vivo remains to be investigated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Toxicology in Vitro
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Toxicology in Vitro
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph