handle: 11104/0241791
Abstract We prove that T NC 1 , the true universal first-order theory in the language containing names for all uniform NC 1 algorithms, cannot prove that for sufficiently large n, SAT is not computable by circuits of size n 4 k c where k ≥ 1 , c ≥ 2 unless each function f ∈ SIZE ( n k ) can be approximated by formulas { F n } n = 1 ∞ of subexponential size 2 O ( n 1 / c ) with subexponential advantage: P x ∈ { 0 , 1 } n [ F n ( x ) = f ( x ) ] ≥ 1 / 2 + 1 / 2 O ( n 1 / c ) . Unconditionally, V 0 cannot prove that for sufficiently large n, SAT does not have circuits of size n log n . The proof is based on an interpretation of Krajicek's proof (Krajicek, 2011 [15] ) that certain NW-generators are hard for T PV , the true universal theory in the language containing names for all p-time algorithms.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apal.2014.08.004&type=result"></script>');
-->
</script>
hybrid |
citations | 35 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apal.2014.08.004&type=result"></script>');
-->
</script>
handle: 11104/0241791
Abstract We prove that T NC 1 , the true universal first-order theory in the language containing names for all uniform NC 1 algorithms, cannot prove that for sufficiently large n, SAT is not computable by circuits of size n 4 k c where k ≥ 1 , c ≥ 2 unless each function f ∈ SIZE ( n k ) can be approximated by formulas { F n } n = 1 ∞ of subexponential size 2 O ( n 1 / c ) with subexponential advantage: P x ∈ { 0 , 1 } n [ F n ( x ) = f ( x ) ] ≥ 1 / 2 + 1 / 2 O ( n 1 / c ) . Unconditionally, V 0 cannot prove that for sufficiently large n, SAT does not have circuits of size n log n . The proof is based on an interpretation of Krajicek's proof (Krajicek, 2011 [15] ) that certain NW-generators are hard for T PV , the true universal theory in the language containing names for all p-time algorithms.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apal.2014.08.004&type=result"></script>');
-->
</script>
hybrid |
citations | 35 | |
popularity | Top 10% | |
influence | Average | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apal.2014.08.004&type=result"></script>');
-->
</script>