doi: 10.1155/jia.2005.495
handle: 11104/0116196
A time scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/jia.2005.495&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 68 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/jia.2005.495&type=result"></script>');
-->
</script>
doi: 10.1155/jia.2005.495
handle: 11104/0116196
A time scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/jia.2005.495&type=result"></script>');
-->
</script>
Green | |
gold |
citations | 68 | |
popularity | Top 10% | |
influence | Top 10% | |
impulse | Average |
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/jia.2005.495&type=result"></script>');
-->
</script>