Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
PID
arrow_drop_down
is
arrow_drop_down
1 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jan Bednárek; Lenka Matějová; Ivan Koutník; Martina Vráblová; +4 Authors

    The preparation of carbonaceous sorbents can combine the use of waste material and the improvement of water quality. Six activated carbons prepared from different agricultural waste biomasses were tested for adsorption of norfloxacin and ofloxacin fluoroquinolone antibiotics from water. Activated carbons were prepared by conventional pyrolysis at 600 °C in a nitrogen atmosphere of ZnCl2-activated red mombin seeds (RMS), corn cob (CC), coffee husk (CH), internal and external parts of mango seeds (MSEP, MSIP), and ice cream beans (GS), which are widely available as agro-industrial biomass wastes in Latin America. The textural and surface properties of prepared activated carbons were thoroughly investigated, and the sorption mechanism was described through proper kinetic and adsorption isotherm models. Moreover, the molecular dimensions of norfloxacin and ofloxacin were estimated to consider the possible sterical shielding of micropores of the investigated activated carbons. Norfloxacin and ofloxacin were strongly adsorbed onto all investigated activated carbons. Adsorption kinetics fitted best to Elovich model, adsorption isotherms correlated best with Redlich–Peterson model. Maximum adsorption capacities, obtained from Langmuir model, were 404 mg·g−1 for norfloxacin and 380 mg·g−1 for ofloxacin. The best adsorption performance was observed for RMS-based activated carbon. A comparison of prepared materials led to the conclusion that high micropore volume and net pore volume are the determining properties of good adsorption performance in the case of removal of fluoroquinolone antibiotics from water.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass Conversion and Biorefinery
    Article . 2022 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass Conversion and Biorefinery
      Article . 2022 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
PID
arrow_drop_down
is
arrow_drop_down
1 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jan Bednárek; Lenka Matějová; Ivan Koutník; Martina Vráblová; +4 Authors

    The preparation of carbonaceous sorbents can combine the use of waste material and the improvement of water quality. Six activated carbons prepared from different agricultural waste biomasses were tested for adsorption of norfloxacin and ofloxacin fluoroquinolone antibiotics from water. Activated carbons were prepared by conventional pyrolysis at 600 °C in a nitrogen atmosphere of ZnCl2-activated red mombin seeds (RMS), corn cob (CC), coffee husk (CH), internal and external parts of mango seeds (MSEP, MSIP), and ice cream beans (GS), which are widely available as agro-industrial biomass wastes in Latin America. The textural and surface properties of prepared activated carbons were thoroughly investigated, and the sorption mechanism was described through proper kinetic and adsorption isotherm models. Moreover, the molecular dimensions of norfloxacin and ofloxacin were estimated to consider the possible sterical shielding of micropores of the investigated activated carbons. Norfloxacin and ofloxacin were strongly adsorbed onto all investigated activated carbons. Adsorption kinetics fitted best to Elovich model, adsorption isotherms correlated best with Redlich–Peterson model. Maximum adsorption capacities, obtained from Langmuir model, were 404 mg·g−1 for norfloxacin and 380 mg·g−1 for ofloxacin. The best adsorption performance was observed for RMS-based activated carbon. A comparison of prepared materials led to the conclusion that high micropore volume and net pore volume are the determining properties of good adsorption performance in the case of removal of fluoroquinolone antibiotics from water.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass Conversion and Biorefinery
    Article . 2022 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass Conversion and Biorefinery
      Article . 2022 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph